Vertical and lateral propagation

A 1800 MHz radio link operates in a Manhattan-like scenario shown in the figure, with uniform building height $(=20 \mathrm{~m}$) street-width equal to 20 m and building-side length also uniform and equal to 100 m (figure non to scale). Let's assume that coverage is guaranteed in NLOS locations through street-corner diffraction(s). Let's also assume that n -times-diffracted rays (rays undergoing n successive diffractions) are always negligible w.r.t. $(\mathrm{n}-1)$-times-diffracted ones. Both terminals are at a height of 1.7 m and while the Rx is fixed the other can be in Tx1 of in Tx2 (see figure).

Neglecting ORT propagation, determine:
a) what street sections can be covered with LOS, with 1 diffraction and with 2 diffractions for each Tx position.

Consider now Tx2 and both LP and VP propagation. In the vertical plane the link profile can be obtained by representing each building with a knife edge in the middle of the block and assuming it orthogonal to the radial line (see figure). VP attenuation can be computed using the Epstein-Peterson method (see attached single knife-edge attenuation formulas). LP attenuation can be computed applying the Berg's method (see attached formulas) to the single-diffracted ray and assuming the angle equal to 90° and the q parameter equal to 0.5 .

Question:
b) what contribution between LP and VP is dominant in terms of Rx power?

Figure 1
Lee's formula:
$A s(d B)=6.4+20 * \log \left(\sqrt{v^{2}+1}+v\right)$ (single diffraction attenuation)
Berg's model formulation
$A_{L}(d B)=20 * \log _{10}\left(\frac{4 \pi * d_{n}}{\lambda}\right)$
where d_{n} is derived from:
$\left\{\begin{array}{l}k_{j}=k_{j-1}+d_{j-1} \cdot q_{j-1} \\ d_{j}=k_{j} \cdot s_{j-1}+d_{j-1}\end{array} \quad\right.$ with $\mathrm{k}_{0}=1, \mathrm{~d}_{0}=0$

Solution

Question a)

With Tx1, the streets tagged by 3 V and 4 O can be covered with LOS, while all the other locations can be covered with only 1 diffraction. With Tx2, only 40 can be covered with LOS, vertical street with 1 diffraction and horizontal streets with 2 diffractions.

Question b)
The resulting VP profile is shown in the figure herebelow:

Applying Epstein-Peterson the total excess attenuation is:

$$
\mathrm{L}_{\text {tot }}=\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3+\mathrm{A} 4=70.8 \mathrm{~dB}
$$

where :

$$
\begin{aligned}
& \mathrm{A} 1=29 \mathrm{~dB}(\mathrm{OBST} 1 \rightarrow v=6.7) \\
& \mathrm{A} 2=6.4 \mathrm{~dB}(\mathrm{OBST} 2 \rightarrow v=0) \\
& \mathrm{A} 3=6.4 \mathrm{~dB}(\text { OBST } 3 \rightarrow v=0.0) \\
& \mathrm{A} 4=29 \mathrm{~dB}(\text { OBST } 4 \rightarrow v=6.7)
\end{aligned}
$$

Applying Berg to the only single-diffracted path the total attenuation results:

$$
L_{L P}=20 \log \left(\frac{4 \pi d_{2}}{\lambda}\right)=121 \mathrm{~dB}
$$

where d_{2} between Tx_{2} and Rx is:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{n}}=\left(1+\mathrm{s}_{0} * \mathrm{q}_{90}\right) * \mathrm{~s}_{1}+\mathrm{s}_{0} \\
& \mathrm{~s}_{0}=\mathrm{Tx}_{2}-\mathrm{Tx}_{1}=60 \mathrm{~m} \\
& \mathrm{~s}_{1}=\mathrm{Tx}_{1}-\mathrm{Rx}=480 \mathrm{~m} \\
& \mathrm{q}_{90}=0.5
\end{aligned}
$$

The total VP attenuation must be computer by adding to diffraction-loss free-space loss for a distance of approximately 480 m . We have therefore:
$A_{V P}=70.8+91.2=162 \mathrm{~dB}$
Therefore the LP contribution to Rx power is greater than the VP one.

