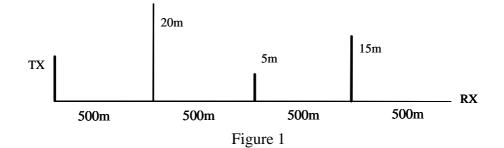
Exercise B1

Problem 1


ſ

A 900 MHz radio link is represented as a knife-edge profile in Figure 1. Tx height is 10 m. Rx's is 0 m.

The additional attenuation due to multiple-edge diffraction must be computed with both the Epstein-Peterson and the Deygout methods.

The following Lee's formulas must be used for single knife-edge loss:

$$L(\nu) = \begin{cases} -20\log(0.5 - 0.62\nu) & -0.8 < \nu < 0 \\ -20\log[0.5\exp(-0.95\nu)] & 0 < \nu < 1 \\ -20\log[0.4 - \{0.1184 - (0.38 - 0.1\nu)^2\}^{1/2}] \\ 1 < \nu < 2.4 \\ -20\log\left[\frac{0.225}{\nu}\right] & \nu > 2.4 \end{cases}$$

Problem 2

Use the method of the "tight rope" to simplify the profile of Figure 1 and then compute the additional attenuation with the two methods as before. Does the result compared to the previous one require any comments?

Problem 1 solution

A) EP method

We have:

$$\begin{split} h_1 &= 12.5; \ a = b = 500m; \ v_1 = h_1 \sqrt{\frac{2}{0.33} \frac{1000}{500 \cdot 500}} = 1.94 \rightarrow A_{s1} = 19.1 dB \\ h_2 &= -12.5; \ a = b = 500m; \ v_2 = -1.94 \rightarrow A_{s2} = negligible \\ h_3 &= 12.5; \ a = b = 500m; \ v_3 = 1.94 \rightarrow A_{s3} = 19.1 dB \\ \end{split}$$
 Thus:
$$A_{sTOT} = 38.2 dB$$

A) Deygout method

We have:

 $h_1 = 12.5; a = 1500, b = 500m; v_1 = 1.58 \rightarrow A_{s1} = 17 dB$ $h_2 = 8.33; a = 500, b = 1000m; v_2 = 1.12 \rightarrow A_{s2} = 15.3 dB$ $h_3 = -12.5; a = b = 500m; same as before \rightarrow A_{s3} = negligible$

Thus:

 $A_{sTOT} = 32.3 \, dB$

Problem 2 solution

Applying the tight rope the second obstacle is dropped. It is easy to see that nothing changes with the Deygout method.

On the contrary, with the EP method we have:

$$h_1 = 8.33; a = 500, b = 1000m; v_1 = 1.12 \rightarrow A_{s2} = 15.3 dB$$

 $h_2 = 8.33; a = 1000, b = 500m; s.a.a. \rightarrow A_{s2} = 15.3 dB$

Thus:

 $A_{sTOT} = 30.6 \, dB$

It must be therefore noticed that the EP method is very sensitive w.r.t. tight-rope profile simplifications, while the Deygout one is not so. As a matter of fact the application of the EP method to "ondulating" profiles can lead to a diffraction-loss overestimation, while the result with tight-rope simplification is in good agreement with Deygout's.

It is therefore advisabile to pre-simplify the link profile using the tight-rope method before applying the EP method, especially for ondulating profiles.