A - TEORIA DELLA PROPAGAZIONE RADIO
IN AMBIENTE REALE

. Propagazione in mezzi con disomogenita concentrate — Propagazione in presenza di
ostacoli

— Teoria geometrica della propagazione: trasmissione attraverso uno strato, diffrazione
da spigolo. Propagazione multicammino.
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Geometrical theory of propagation (I)

It is useful when propagation takes place in a region with concentrated
obstacles. Obstacles are here represented as plane walls and rectilinear

wedges (canonical obstacles)

wall

V. Degli-Esposti, “Propagazione e pianificazione nei sistemi d’area”
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Geometrical theory of propagation (II)

electromagnetic constants:

air wall (generic medium)
| R . o
e, =— 10" Farad/m € electric permittivity
361
u, =4n10” Henry/m u=pu magnetic permeability
0=0 o (if lossy) electric conductivity
0) .0 e
£ =E+t—=¢€-j— complex permittivity
jo )
A |€ .
n=1 n=|— refraction index
80
n,=120x Q n= A A intrinsic impedance
SC 86‘
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Geometrical theory of propagation (I1I)

» Geometrical theory of propagation is an extension of Geometrical Optics,
(GO) and 1s not limited to optical frequencies (ﬂ, — 0 sothat An—0 over /l)

» Like GO, it corresponds to an asymptotic, high-frequency approximation of
basic electromagnetic theory, and is based on the ray concept

* Since GO does not account for diffraction, then diffraction is introduced
through an extension called Geometrical Theory of Diffraction (GTD)

* The combination of GO and GTD, applied to radio wave propagation may

be called Geometrical Theory of Propagation (GTP) and is the base of
deterministic, ray propagation models (ray-tracing etc.)
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Recall: waves and rays

« Wavefront: surface were the field has the same phase (varies “in phase™)

« Ray: given a propagating wave, every curve that is everywhere
perpendicular to the wavefront i1s called ray. A ray is the path of a wave.
There i1s a mutual identification btw wave and ray

« In presence of concentrated obstacles rays are piecewise-rectilinear and
wavefronts can be of various kinds (see further on)

Ex.1 Sperical wave and Ex.2 reflected spherical wave and
rectilinear rays piece-wise rectilinear rays
Rays are
normal to Ky
wavefronts 1
Point

source

€« Wavefronts
expanding
from point
source
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The spherical wave

In free space the reference wave is the spherical wave

reference distance

excess distanoe

N | field:
o IR ~iBpo
S A= B(R) =B — =B P ten)
\ ,'R:PoJrS ': P s P
S 0 o IB(R=ps) _ 0 ,iBs)
\ (po) (po)p0+s

power density:

_ p:
S(R)=S(po) s

2
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The astigmatic wave: divergence factor

If the mean is homogeneous (= rectilinear rays) [2]
the generic wave’s divergence factor is:

A(pl,pz,s)=\/(pl +§1)€;2 +5) [:\/CZO]

Reference - A : Divergence or Spreading factor
wavefront - P1, P2 : curvature radii
- C,C,, C,C, : wave caustics

Tube of flux

There are 3 main reference cases: notice that, for power conservation:

- ldd, _ |[E[ _ |8 _ |1
pherical wave: p,=p, =p A s ad e[ a7V

L: power attenuation

- Cylindrical wave: p;=o, p,=py & A= [ PO
Pg +S

- Plane wave: p;=p, == A=1
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The generic wave: amplitude and
polarization

The divergence factor gives the field- (and thus power-) attenuation law along
the ray. But since the field is a complex vector, we also have polarization.
The generic (astigmatic) wave in free space has the electric field:

- ~ P _8 (Ex: spherical wave)
_’ I PP —j Els)=E -—2 e/
E(s)= E(0) J e S B e
— ( +S ) . ( + S) . ~
Field atreference pl p2 g Phase factor ‘K e’ Fry P, ~iBs — 5K e TP
point (s=0) k Divergence factor ) P o p,t+s P s,
Propagation factor Propagation factor

This expression gives the field amplitude along a ray.
The (normalized) polarization vector gives the polarization of the wave:

PN l:i:‘(s) o/
()

p

The polarization vector has the same polarization as the field but is normalized.
In free space it is constant along the ray. The antenna polarization vector 1s the
polarization vector of the field emitted by the considered antenna.
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Interaction mechanisms

T Building wall

“1-Diffuse scat. Vertex diffraction

....

.
.
“““““
* .
“
.

3 ‘e, L
. G
" ‘e h
''''
e 4

o a’)
..', s J
00000 ,h/ss/
..... O’)

Edge diffrjaction
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GTP basics

o GTP is based on the couple: (ray , field)

» The propagating field is computed as a
set of rays interacting with building
walls

* Given a ray departing from an antenna we must “follow” the ray and predict
both its geometry and its field at every point until it reaches the receiver

« It 1s therefore necessary to predict what happens at both the trajectory and the
field at each interaction with an obstacle

 For this purpose, we rely on the two GTP basic principles
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GTP: basic principles
“Local field principle” (interactions)

» The wave can be locally assumed plane
3 D
« The field associated with the reflected/transmitted/ A
diffracted ray only depends on the electromagnetic and
geometric properties of the obstacle in the vicinity of the
interaction point

“Fermat’s principle” (trajectory)

» The ray trajectory is always so as to minimize path
(or optical-path ...)

S)
2
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Ray Reflection and Transmission

~
n2 \\ /ﬁ
. 1 . f h . . \ /
radial rays spring from the transmitting N ;
N /
antenna S g
/ﬂi\\
...x"“‘ ? ;’( g e|: r\\\
S N
* when a ray impinges on the plane surface the D v TN
corresponding wave is reflected and transmitted, ASE s ahins
. . Lo N S
thus generating reflected and transmitted rays R A n,=1

* The incident ray trajectory 1s modified according to the Snell's laws of reflection
(transmission). Rays and wavefronts are as if the reflected wave generated at the
source image point...

* The field amplitude / phase change at the interaction point according to proper
Fresnel’s reflection (transmission) coefficients

2
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Retlection and Transmission Coefficients

TE polarization
E 2
6, n
i i cos@i—\/ " —sin’ 6,
00000 5 2R — T = 14T,
cos@i+\/ M| _sin? 6
nl

*TM polarization

2 2
n .
~2 | cosf. — —sin’ 6.
n 1 1

1

1_‘TM - o) )
n .
~2 | cosO. + —sin’ 6.
n 1 l

1

’ N

s Toug =1+FTM

:’:

—
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Field formulation

* trajectory: reflection law or Fermat’s principle
Reflected ray

N * Field expression:

E™ (S) B 0
E™(s) |

D)

Pg: reflection point

Transmitted ray e direction: Snell’s law or Fermat’s principle Spreading
factor

A

* Field expression:

oot
S
()

Fresnel’s coefficients

e Reflection does not change the spreading factor of the wave !!
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Example: dielectric materials

€.=81
g =
= = €.=25
_EJ g e=16
O G
E = g,=9
o 8
< c
O S _
g 5 oy
S I e,=2.56

QU
6, 6,
TE Polarization TM Polarization
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Transmission through a wall (1/5)

* Hypotheses: - normal or quasi-normal incidence
- weakly lossy medium

pin

cos. + ™| Zsin? 6.
pre nl
2
S Ere E 2
2 re 2
R — n_ —=[T]
Sm ‘Eln Ein
2n

(Source: Prof. H.L. Bertoni)
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Transmission through a wall (2/5)

In a lossy medium the wavenumber can be written as:

k= a)«/,uoec = a),/,uoeogr

The complex relative dielectric constant can be written as:
e 8/ '8” E e
= —J =— =] —
r r r
80 6080
If the medium is weakly lossy £” <<¢’.
A plane wave propagating through the lossy medium has the expression:

E= Eoe_jkr = Eoe_(a+jﬁ)r; with jk=o+j3

[ [ ’ ’ ” ), ’ ’ .”
C
8” 8”
) . @ :
=—\e. [I-j—L=—\e.|1-j—*
’ r
C & c
r

2€

’
r

Where the series expansion have been truncated at first order




Transmission through a wall (3/5)

Therefore;

w - 8ll
jk=a+jﬂz—\/; —+j|=
¢ 2¢e
r
w - 8,,
r

2€
p=2 e

E(r) =|E(0) e

S(r)=S(0)-e7*

N\




Transmission through a wall (4/5)

The reflection coefficient at normal incidence for the air-medium interface is

e
0m_1+\/7

The reflection coefficient for the second, medium-air interface is (see the
expression of the reflection coefficients for normal incidence)

JE, —1
= :—F
Fio 1+ /€, ’

Now if we consider the first interface we have

m

= ‘2

S>qﬂ1 _ 2

S.

incl

2 :‘FOm‘




Transmission through a wall (5/5)

For power conservation we have:

o 1= Sreﬂl n Stmsml =‘1- n Stmsml

2
Sincl - Om‘

incl incl incl

S refll +35 trasml

Strasml _ 1_|F0m|2

incl
Now the transmitted power at the first interface, properly multiplied by the lossy-
medium attenuation factor becomes the incident power at the second interface,
therefore we have

Sl’ efl2 2_ 2 2 S transm?2 S transm?2 S transm?2 2
=" =T’ =1 = = =1-|
SincZ ’ mO’ ’ Om‘ ’ ’ SincZ Stmnsmle—Zocw S (1 B ’F‘Z ) e—ZOCW ‘ ‘
incl
Thus: Stransm2 _ Sout _ (1 —‘F‘Z )2 e—Zch ] = Sin _ eZOCW
Sincl Sin t out (1_|r‘2)2




Example of Transmission Loss

Brick wall: €'=4, €"=0.2, w=20 cm

2

S —
" =—2 = V4| ~L_0.11 or 9.6dB
Soq |NA+1] 9
2
at 1800 MHz (A =1/6 m): o = 027 =1.88
(1/6)4

t

L, = ;— =(1-0.11) 2" =27 or 4.3dB

out



Summary of Reflection and
Transmission Loss

Theory
Wall Type Frequency Band | Ref. loss Trans. Loss
Brick, exterior 1.8 -4 GHz 10 dB 10 dB
Concrete block, interior 2.4 GHz 5dB
Gypsum board, interior 3.4 GHz 4 dB 2 dB
Measured
Exterior frame 800 MHz 4-7dB
5-6 GHz 9-18dB
with metal siding 5 GHz 36 dB
Brick, exterior 4 -6 GHz 10 dB 14 dB
Concrete block, interior 2.4/5 GHz 5/5-10dB
Gypsum board, interior 2.4/5 GHz 3/5dB
Wooden floors 5 GHz 9dB
Concrete floors 900 MHz 13 dB

(Source: Prof. H.L. Bertoni)
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Geometrical Theory of Diffraction

The extension of GO to the category of diffracted rays was first introduced by J. B. Keller
in 1961 and is based on the following assumptions!! :

I. 4 diffracted ray is generated whenever a ray impinges on an edge (or on a vertex)

I1. For every diffracted ray the Fermat's principle holds

1L

Diffraction law: the angles between incident / diffracted ray and

0, the edge satisfy “Snell’s law applied to diffraction”:
'l .8iNOG. =n, - Si
Keller’s N, -sinB;, = ny - sinO
RN =» If the rays are in the same material then: 6,=6;.
Therefore diffracted rays ouside the wedge belong to the
? Keller’s cone
Incident ray

V. Degli-Esposti, “Propagazione e pianificazione nei sistemi d’area”



The diffracted ray (1/3)

* In urban propagation only straight edges (local field principle) are
of interest. Vertex diffraction won’t be treated here

« If the impinging wave is plane (or can be approximated so for the
local field principle) then the diffracted wave is cylindrical for
perpendicular incidence (0,=6,=m/2) and conical for oblique
incidence (the wavefront is a cone) [7]

» The diffracted wave is so that one caustic coincides with the edge. Therefore the
divergence factor of the diffracted wave/ray is different from that of the incident
wave/ray (see further on)

» The diffracted ray field can be computed by solving Maxwell’s equations for a plane ,
cylindrical or spherical wave incident on a straight conducting edge [7, 8, 9] and
somehow subtracting from the solution the incident wave and the reflected wave(s).

» Then the diffracted field 1s expanded in a Luneberg-Kline series from which only the
first term (high frequency approx.) is kept in order to derive the diffraction coefficients
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The diffracted ray (2/3)

The high frequency term has the form:

d d Reference

e
1 2

P4, p,¢ = curvature radii of the diffracted wave.

One caustic coincides with the edge: p,¢ corresponds to O’-Q
where O’ 1s the reference point, origin of the coordinate s.

It is useful to choose O’=Qp (p,*=0 =>» simpler expression). However for power conser-
vation reasons E4(O’) =2 < for O’=> Q,

Since Ed(s) cannot change with the reference system, therefore it must be:

01i_)né1D [ E‘ (0")-/p5 }zﬁm’te vector = E! (0,)-D |:> E“ (S)z E' (QD)-D-A(pd,S)- e /P
¢t =

with: 4(p".s)= |[7————

th (p ) (p”’+s)-s

D is the diffraction matrix, which contains the diffraction coefficients

V. Degli-Esposti, “Propagazione e pianificazione nei sistemi d’area”



The diffracted ray (3/3)

Diffrastion plane =>» trajectory: Fermat s principle

A => Field expression: spreading
factor...

T 1/

Ey | Do E["%(QD) ’.e_jﬁs
ELLLO D] E(o)

if the proper local reference system is adopted
(see figure) then the diffraction matrix reduces
to a 2x2 diagonal matrix, otherwise it’s a 3x3

matrix

®-polarization is called “hard” (TE), B-
polarizationi is called “soft” (TM)

==, Incidence plane




The divergence factor

If p,9— 0 as shown, then we get : Alp".s) p*
)=
(P4 —p9 s-(pd+s)
1 for a plane incident wave
Js
For a straight edge we have: 4 (pd,s): 4 ; for a cylindricalincident wave
\s-sin B,
o
———  foraspherical incident wave
s-(p*+s)

 For the computation of the diffraction coefficients we refer in the
following to a simple case with a cylindrical incident wave.
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The diffraction coefficients for
a canonical 2D problem

ISB : Incidence Shadow Boundary

RSB : Reflection Shadow Boundary

R 1 : direct + reflected + diffracted
R IT : direct + diffracted
R III : diffracted

Hypotheses:

e unlimited perfectly conducting wedge of angular
width WA=2-n)t (0<n<2)

 Infinite uniform linear source parallel to the edge
with constant current I i,

0

cylindrical incident wave with normal incidence
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The diffraction coeftficients

Adopting the method described above the following Keller’s diffraction coefficients
are obtained (Geometrical Theory of Diffraction, GTD) [9]

—e % .sin %
D*(9.9'.n)= Nﬂf( ) cos| COSF/ ) co| ICOSF% j

.7
D (4.0 ) EV )

1 1
+
COS (%)*008(54j COS (%)—008(54j
Such coefficients have singularities on the shadow boundaries, i.e. when:

S-=¢-¢’=m (ISB)
St=¢+¢=m (RSB)

Therefore also other, more complicated coefficients have been derived which do
_-not have such singularity: the UTD (Uniform Theory of Diffraction) coefficients
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Example (1/2)

Diffraction Coefficients Comparison: n=1.5, phi = 45 deg

| D sgqri(2¥k¥pi) |

60
Theta (deg)

UTD Soft Coefficient —¢— Keller Soft Coefficient —+— Kirchhoff Coefficient —&—
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Example (2/2)

UTD, considering the diffracted ray and the incident ray

gyl

Full light

...............
““““
‘‘‘‘
.
.
.
.
o
o
0

Deep shadow
=1

inc. ray

9

“shadow’

V. Degli-Esposti, “Propagazione e pianificazione nei sistemi d’area”




Other notes on GTP

A single ray can undergo multiple interactions. The resulting ray is therefore a
polygonal line and the proper interaction coefficients must be applied for each
interaction. The proper divergence factor must then be applied for the overall piece-
wise path.

» Reflection and transmission does not change the form of the divergence factor of a ray.
Diffraction does.

 Diffraction coefficients for oblique incident and dielectric wedges have also been
derived by some authors

» The interaction called “diffuse scattering” is important but is not treated here. It will be
briefly treated further on.
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Computation Examples: reflection

For the generic incident astigmatic wave we can write:

B()= E(o,) - R(O,0) - PrP . o
— - ~ ~ (Pl +S)'(P2 +S) Phase factor
ﬁeld at reference  Reflection cpefﬁcient N — )
point (Qg » s=0) (Dyadic) divergence or spreading
factor

The use of the Dyadic Reflection coefficient [8]
allows to refer to a fixed reference system

. Al AT AL AT
R=T, (e//e// )+ Iy (eJ_eJ_ )

ab, ab, ab.
(ab)%|ab, ab, ap,
ab, ab, ab. reference point
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Reflection (II)

2’ (s)

For a spherical incident wave the
expression above becomes (p, =p, =s’):

E(s)=F¢ " m S em_pop e

S - s+’

b=

which 1s equivalent to :
Divergence

factor for a
spherical wave

E ., (s) r. o

TE

S) 0 T

T——  Incident field in
Qr
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Diffraction plane

Incidence plane

Diffraction

Diffraction coefficients = Diffracted field

E, :_DS 0 | E;,O(QD) 4P
i Ecj 1 L 0 b L E;)(QD) |

A 1s the divergence factor for the diffracted
field. For a spherical incident wave:

! — S' i ~0i _J.,BS‘
A(S ’S)_ S'(S'+S) b (QD):EO eS'
Therefore we have:
Ej | b0 E/(; , 1 B+
E! 0 D, || E¥ | [ss(s+s)
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Diffraction plane

Incidence plane

Diffraction (ll)

Using the the Dyadic Diffraction coefficient:

2 =D, (,BA(')BO )+Dh (ngg)

we have

EF!i=E°.D. I .e‘fﬁ(”S')

\/S°S"(S'+S)
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Double 1nteraction (1/2)

Reflection + Vertical Edge Diffraction

Buildings height [m]
50

..............

X [m]

~ L IBS
Field at the reflection point: E (QR )= E° e—,,
S
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Double interaction (2/2)

The field at the diffraction point is:
—jBs” ” —]'ﬁ(S""S”)
S By e
—JBs" _
e =E,-

E(QD):EO'QS” .5.5’+S”

E(0r)
Finally, the field at the RX can be computed as:

=

’ ”

S +5

(s"+5")

remember :
E R.x - E . D . . ~JBs =
(Rx)=£(0,)-D \/SI:S + (S,-I-S”):I © [A(s’,s)
_EF'R.D. 1 (s"+57) o IBsrsT) _
s +s” S[s+(s'+s”)]

1 . e—jﬁ (s+s"+s")

= \/S (s"+5")(s+5"+5)

I
IS

I

St
I=
S

S-(5'+S)

|



Superposition of multiple rays (1/3)

iffuse 1
scattering{
e[| T
LT

I

NNV mEEEd
A 11 17

ENENIEN
L]
=Illll
|
=

(Multipath propagation...)

.......
“________._-_-_-_-.-.-.—. ........

~~~~~~~~~~~~~~

-------

ﬁﬁﬁﬁﬁ
----

iffraction

eflection E
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Superposition of multiple rays (2/3)

The total field at a given position P can be computed through a coherent,
vectorial sum of the field of all rays reaching P (difficult to determine
though...):

Moreover, the delays and angles of departure/arrival of the different ray
contributions can be recorded get a multidimensional prediction.

In fact the GTP, determining its trajectory, also yields the following
parameters for the k-th ray:

s* total unfolded length

h=s" . propagation delay

X" = (Gﬁ,cpﬁ ) angles of departure

yh = (0’;,(])1];) angles of arrival
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Superposition of multiple rays (3/3)

Multipath propagation — not only attenuation !

Multipath
Attenuation Angle/space
(fading) Time dispersion
dispersion Angle spread
Delay spread

Some systems can exploit multipath, others only cope with it
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