A - TEORIA DELLA PROPAGAZIONE RADIO IN AMBIENTE REALE

- Effetto di gas atmosferici e idrometeore
 - Attenuazione supplementare da gas atmosferici
 - Attenuazione supplementare da pioggia
 - Propagazione ionosferica, troposcatter
 - Propagazione in mezzi con disomogenità distribuita Propagazione troposferica
 - Cenni di ottica geometrica in mezzi con n debolmente variabile.
 - Propagazione in mezzi a stratificazione piana e sferica. Propagazione troposferica, orizzonte radio e rettificazione del suolo/raggio
 - Propagazione in mezzi con disomogenità concentrate Propagazione in presenza di ostacoli
 - Riflessione del suolo, diffrazione da knife-edge, ellissoide di Fresnel
 - Metodi per il calcolo della diffrazione da ostacoli
 - Teoria geometrica della propagazione: trasmissione attraverso uno strato, diffrazione da spigolo. Propagazione multicammino.

Geometrical theory of propagation (I)

It is useful when propagation takes place in a region with <u>concentrated</u> <u>obstacles</u>. Obstacles are here represented as <u>plane walls</u> and <u>rectilinear</u> <u>wedges (*canonical obstacles*)</u>

Geometrical theory of propagation (II)

electromagnetic constants:

wall (generic medium) air $\varepsilon_o = \frac{1}{36\pi} 10^{-9} Farad / m$ electric permittivity E $\mu_{o} = 4\pi 10^{-7}$ Henry / m magnetic permeability $\mu = \mu_o$ σ (if lossy) $\sigma = 0$ electric conductivity $\varepsilon_c = \varepsilon + \frac{\sigma}{i\omega} = \varepsilon - j\frac{\sigma}{\omega}$ complex permittivity $n \triangleq \sqrt{\frac{\varepsilon_c}{\varepsilon}}$ refraction index n=1 $\eta \triangleq \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{\mu_o}{\varepsilon}}$ $\eta_o = 120 \pi \Omega$ intrinsic impedance

Geometrical theory of propagation (III)

- Geometrical theory of propagation is an <u>extension of Geometrical Optics</u>, (GO) and is not limited to optical frequencies $(\lambda \rightarrow 0 \text{ so that } \Delta n \rightarrow 0 \text{ over } \lambda)$
- Like GO, it corresponds to an asymptotic, high-frequency approximation of basic electromagnetic theory, and is based on the *ray concept*
- Since GO does not account for diffraction, then diffraction is introduced through an extension called Geometrical Theory of Diffraction (GTD)
- The combination of GO and GTD, applied to radio wave propagation may be called Geometrical Theory of Propagation (GTP) and is the base of deterministic, ray propagation models (ray-tracing etc.)

Recall: waves and rays

- <u>Wavefront</u>: surface were the field has the same phase (varies "in phase")
- <u>Ray</u>: given a propagating wave, every curve that is everywhere perpendicular to the wavefront is called ray. A ray is *the path* of a wave. There is a mutual identification btw wave and ray
- In presence of <u>concentrated obstacles</u> rays are <u>piecewise-rectilinear and</u> <u>wavefronts can be of various kinds</u> (see further on)

Ex.2 reflected spherical wave and piece-wise rectilinear rays

The spherical wave

In free space the reference wave is the spherical wave

field:

power density:

$$S(R) = S(\rho_0) \left(\frac{\rho_0}{\rho_0 + s}\right)^2$$

The astigmatic wave: divergence factor

If the mean is homogeneous (\rightarrow rectilinear rays) [2] the generic wave's divergence factor is:

$$A(\rho_1,\rho_2,s) = \sqrt{\frac{\rho_1 \cdot \rho_2}{(\rho_1 + s) \cdot (\rho_2 + s)}} \left(= \sqrt{\frac{dA_0}{dA}} \right)$$

- A : Divergence or Spreading factor
- $-\frac{\rho_1, \rho_2}{C_1C_2}$: curvature radii - $\overline{C_1C_2}$, $\overline{C_3C_4}$: wave caustics

There are 3 main reference cases:

- <u>Spherical wave</u>: $\rho_1 = \rho_2 = \rho_0 \Rightarrow A = \frac{\rho_0}{\rho_0 + s}$
- <u>Cylindrical wave</u>: $\rho_1 = \infty$, $\rho_2 = \rho_0 \Rightarrow A = \sqrt{\frac{\rho_0}{\rho_0 + s}}$
- notice that, for power conservation: $A = \sqrt{\frac{dA_0}{dA}} = \sqrt{\frac{|E|^2}{|E_0|^2}} = \frac{|E|}{|E_0|} = \sqrt{\frac{1}{L}}$ *L*: power attenuation

- <u>Plane wave</u>: $\rho_1 = \rho_2 = \infty \rightarrow A = 1$

The generic wave: amplitude and polarization

The divergence factor gives the field- (and thus power-) attenuation law along the ray. But since the field is a complex vector, we also have polarization. The generic (astigmatic) wave in free space has the electric field:

This expression gives the field amplitude *along* a ray.

The (normalized) *polarization vector* gives the polarization of the wave:

$$\hat{\mathbf{p}} \triangleq \frac{\vec{E}(s)}{\left|\vec{E}(s)\right|} e^{j\chi}$$

The polarization vector has the same polarization as the field but is normalized. In free space it is constant along the ray. The *antenna polarization vector* is the polarization vector of the field emitted by the considered antenna.

Interaction mechanisms

GTP basics

- <u>GTP is based on the couple: (ray, field)</u>
- The propagating field is computed as a <u>set of rays</u> interacting with building walls

- Given a ray departing from an antenna we must "follow" the ray and predict both its <u>geometry</u> and its <u>field</u> at every point until it reaches the receiver
- It is therefore necessary to predict what happens at both the trajectory and the field at each interaction with an obstacle
- For this purpose, we rely on the <u>two GTP basic principles</u>

GTP: basic principles

"Local field principle" (interactions)

- The wave can be locally assumed plane
- The field associated with the reflected/transmitted/ diffracted ray only depends on the electromagnetic and geometric properties of the obstacle in the vicinity of the interaction point

• The ray trajectory is always so as to minimize path (or optical-path ...)

D

S

Ray Reflection and Transmission

radial rays spring from the transmitting antenna

• when a ray impinges on the <u>plane surface</u> the corresponding wave is reflected and transmitted, thus generating **reflected** and **transmitted** rays

- The incident ray trajectory is modified according to the *Snell's laws of reflection* (*transmission*). Rays and wavefronts are *as if* the reflected wave generated at the source image point...
- The field amplitude / phase change at the interaction point according to proper Fresnel's *reflection (transmission) coefficients*

Reflection and Transmission Coefficients

•TE polarization

$$\Gamma_{TE} = \frac{\cos\theta_i - \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}}{\cos\theta_i + \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2\theta_i}} ; \ \tau_{TE} = 1 + \Gamma_{TE}$$

•TM polarization

$$\Gamma_{TM} = \frac{\left(\frac{n_2}{n_1}\right)^2 \cos \theta_i - \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i}}{\left(\frac{n_2}{n_1}\right)^2 \cos \theta_i + \sqrt{\left(\frac{n_2}{n_1}\right)^2 - \sin^2 \theta_i}}; \ \tau_{TM} = 1 + \Gamma_{TM}$$

Field formulation

• trajectory: reflection law or Fermat's principle

• Field expression:

Fresnel's coefficients

Reflection does not change the spreading factor of the wave !! V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

Reflected ray

Transmitted ray

Example: dielectric materials

Reflection coefficient $|\Gamma_{TE}|$

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

Transmission through a wall (1/5)

* Hypotheses: - normal or quasi-normal incidence

- weakly lossy medium

(Source: Prof. H.L. Bertoni)

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

Transmission through a wall (2/5)

In a lossy medium the wavenumber can be written as:

$$k = \omega \sqrt{\mu_0 \varepsilon_c} = \omega \sqrt{\mu_0 \varepsilon_0 \varepsilon_r}$$

The complex relative dielectric constant can be written as:

$$\varepsilon_r = \varepsilon'_r - j\varepsilon''_r = \frac{\varepsilon}{\varepsilon_0} - j\frac{\sigma}{\omega\varepsilon_0}$$

If the medium is <u>weakly lossy</u> ε " << ε '. A plane wave propagating through the lossy medium has the expression:

$$\mathbf{E} = \mathbf{E}_{\mathbf{0}} e^{-jkr} = \mathbf{E}_{\mathbf{0}} e^{-(\alpha + j\beta)r}$$
; with jk= $\alpha + j\beta$

Thus:

$$k = \omega \sqrt{\mu_0 \varepsilon_0 \varepsilon_r} = \omega \sqrt{\mu_0 \varepsilon_0} \sqrt{\varepsilon'_r - j\varepsilon''_r} = \frac{\omega}{c} \sqrt{\varepsilon'_r - j$$

Where the series expansion have been truncated at first order

Transmission through a wall (3/5)

Therefore:

$$jk = \alpha + j\beta \approx \frac{\omega}{c} \sqrt{\varepsilon'_r} \left(\frac{\varepsilon''_r}{2\varepsilon'_r} + j\right) \Rightarrow$$

$$\begin{cases} \alpha \approx \frac{\omega}{c} \sqrt{\varepsilon'_r} \left(\frac{\varepsilon''_r}{2\varepsilon'_r}\right) \\ \beta \approx \frac{\omega}{c} \sqrt{\varepsilon'_r} \end{cases}$$

$$\left|\overline{E}(r)\right| = \left|\overline{E}(0)\right| \cdot e^{-\alpha r}$$
$$S(r) = S(0) \cdot e^{-2\alpha r}$$

Transmission through a wall (4/5)

The reflection coefficient at normal incidence for the air-medium interface is

$$\Gamma_{0m} = \frac{1 - \sqrt{\varepsilon_r}}{1 + \sqrt{\varepsilon_r}}$$

The reflection coefficient for the second, medium-air interface is (see the expression of the reflection coefficients for normal incidence)

$$\Gamma_{m0} = \frac{\sqrt{\varepsilon_r} - 1}{1 + \sqrt{\varepsilon_r}} = -\Gamma_{0m}$$

Now if we consider the first interface we have

$$\frac{S_{refl1}}{S_{inc1}} = \frac{\left|\vec{E}_{refl1}\right|^2}{\left|\vec{E}_{in1}\right|^2} = \left|\Gamma_{0m}\right|^2$$

Transmission through a wall (5/5)

For power conservation we have:

$$\begin{split} S_{inc1} &= S_{refl1} + S_{trasm1} \implies 1 = \frac{S_{refl1}}{S_{inc1}} + \frac{S_{trasm1}}{S_{inc1}} = \left|\Gamma_{0m}\right|^2 + \frac{S_{trasm1}}{S_{inc1}} \\ \frac{S_{trasm1}}{S_{inc1}} &= 1 - \left|\Gamma_{0m}\right|^2 \end{split}$$

Now the transmitted power at the first interface, properly multiplied by the lossymedium attenuation factor becomes the incident power at the second interface, therefore we have

$$\frac{S_{refl2}}{S_{inc2}} = |\Gamma_{m0}|^{2} = |\Gamma_{0m}|^{2} = |\Gamma|^{2} ; \quad \frac{S_{transm2}}{S_{inc2}} = \frac{S_{transm2}}{S_{transm1}e^{-2\alpha w}} = \frac{S_{transm2}}{S_{inc1}\left(1 - |\Gamma|^{2}\right)e^{-2\alpha w}} = 1 - |\Gamma|^{2}$$
Thus:

$$\frac{S_{transm2}}{S_{inc1}} = \frac{S_{out}}{S_{in}} = \left(1 - |\Gamma|^{2}\right)^{2}e^{-2\alpha w} \Rightarrow L_{t} = \frac{S_{in}}{S_{out}} = \frac{e^{2\alpha w}}{\left(1 - |\Gamma|^{2}\right)^{2}}$$

Example of Transmission Loss

Brick wall: ε_r '=4, ε_r "=0.2, w=20 cm

$$|\Gamma|^{2} = \frac{S_{refl1}}{S_{inc1}} \approx \left| \frac{\sqrt{4} - 1}{\sqrt{4} + 1} \right|^{2} = \frac{1}{9} = 0.11 \text{ or } -9.6 \text{dB}$$

at 1800 MHz ($\lambda_{o} = 1/6 \text{ m}$): $\alpha = \frac{0.2\pi}{(1/6)\sqrt{4}} = 1.88$
 $L_{t} = \frac{S_{in}}{S_{out}} = (1 - 0.11)^{2} e^{2(0.2)(1.88)} = 2.7 \text{ or } 4.3 \text{dB}$

Summary of Reflection and Transmission Loss

Theory			
Wall Type	Frequency Band	Ref. loss	Trans. Loss
Brick, exterior	1.8 - 4 GHz	10 dB	10 dB
Concrete block, interior	2.4 GHz		5 dB
Gypsum board, interior	3.4 GHz	4 dB	2 dB
Measured			
Exterior frame	800 MHz		4 - 7 dB
	5 - 6 GHz		9 - 18 dB
with metal siding	5 GHz		36 dB
Brick, exterior	4 - 6 GHz	10 dB	14 dB
Concrete block, interior	2.4 / 5 GHz		5 / 5 - 10 dB
Gypsum board, interior	2.4 / 5 GHz		3 / 5 dB
Wooden floors	5 GHz		9 dB
Concrete floors	900 MHz		13 dB

(Source: Prof. H.L. Bertoni)

Geometrical Theory of Diffraction

The extension of GO to the category of diffracted rays was first introduced by J. B. Keller in 1961 and is based on the following assumptions^[6]:

I. A diffracted ray is generated whenever a ray impinges on an edge (or on a vertex)

II. For every diffracted ray the Fermat's principle holds

<u>Diffraction law</u>: the angles between incident / diffracted ray and the edge satisfy "Snell's law applied to diffraction":

 $n_i \cdot sin\theta_i = n_d \cdot sin\theta_d$

→ If the rays are in the same material then: $\theta_d = \theta_{i;}$ Therefore diffracted rays ouside the wedge belong to the *Keller's cone*

The diffracted ray (1/3)

- In urban propagation only straight edges (local field principle) are of interest. Vertex diffraction won't be treated here
 - If the impinging wave is plane (or can be approximated so for the local field principle) then the diffracted wave is cylindrical for perpendicular incidence ($\theta_d = \theta_i = \pi/2$) and conical for oblique incidence (the wavefront is a cone) [7]
- <u>The diffracted wave is so that one caustic coincides with the edge.</u> Therefore the <u>divergence factor of the diffracted wave/ray is different from that of the incident</u> <u>wave/ray (see further on)</u>
- The diffracted ray field can be computed by solving Maxwell's equations <u>for a plane</u>, <u>cylindrical or spherical wave incident on a straight conducting edge</u> [7, 8, 9] and somehow subtracting from the solution the incident wave and the reflected wave(s).
- Then the diffracted field is expanded in a Luneberg-Kline series from which only the first term (high frequency approx.) is kept in order to derive the *diffraction coefficients*

The diffracted ray (2/3)

The high frequency term has the form:

$$\vec{E}^{d}(s) = \vec{E}^{d}(O') \cdot \sqrt{\frac{\rho_{1}^{d} \cdot \rho_{2}^{d}}{(\rho_{1}^{d} + s) \cdot (\rho_{2}^{d} + s)}} \cdot e^{-j\beta s}$$

 ρ_{2} ρ_{2} Reference wavefront

 ρ_1^d , ρ_2^d = curvature radii of the diffracted wave. <u>One caustic coincides with the edge</u>: ρ_2^d corresponds to O'-Q_D where O' is the reference point, origin of the coordinate s.

It is useful to choose $O'=Q_D$ ($\rho_2^d=0 \rightarrow$ simpler expression). However for power conservation reasons $E^d(O') \rightarrow \infty$ for $O' \rightarrow Q_D$

Since $E^{d}(s)$ cannot change with the reference system, therefore it must be:

$$\lim_{\substack{O' \to Q_D \\ (\rho_2^d \to 0)}} \left[\vec{E}^d \left(O' \right) \cdot \sqrt{\rho_2^d} \right] = finite \ vector \equiv \vec{E}^i \left(Q_D \right) \cdot \mathbf{D} \quad \Longrightarrow \quad \vec{E}^i \left(Q_D \right) \cdot \mathbf{D} \cdot A \left(\rho^d, s \right) \cdot e^{-j\beta s}$$
with: $A(\rho^d, s) = \sqrt{\frac{\rho^d}{(\rho^d + s) \cdot s}}$

D is the *diffraction matrix*, which contains the diffraction coefficients

The diffracted ray (3/3)

- trajectory: Fermat's principle
- ➔ Field expression:

spreading factor...

$$\begin{bmatrix} E_{\beta_0}^d \\ E_{\phi}^d \end{bmatrix} = \begin{bmatrix} D_s & 0 \\ 0 & D_h \end{bmatrix} \begin{bmatrix} E_{\beta_0^i}^i(Q_D) \\ E_{\phi^i}^i(Q_D) \end{bmatrix} \cdot A(s, \rho^d) \cdot e^{-j\beta s}$$

if the proper local reference system is adopted (see figure) then the diffraction matrix reduces to a 2x2 diagonal matrix, otherwise it's a 3x3 matrix

Φ-polarization is called "hard" (TE), β -polarizationi is called "soft" (TM)

The divergence factor

• For the computation of the diffraction coefficients we refer in the following to a simple case with a cylindrical incident wave.

The diffraction coefficients for a canonical 2D problem

ISB : Incidence Shadow Boundary

RSB : Reflection Shadow Boundary

- R I : direct + reflected + diffracted R II : direct + diffracted
- R III : diffracted

Hypotheses:

- unlimited perfectly conducting wedge of angular width WA = $(2-n)\pi$ ($0 \le n < 2$)
- Infinite uniform linear source parallel to the edge with constant current $I_0 i_z$

cylindrical incident wave with normal incidence

The diffraction coefficients

Adopting the method described above the following Keller's diffraction coefficients are obtained (*Geometrical Theory of Diffraction, GTD*) [9]

$$D^{s}(\phi,\phi',n) = \frac{-e^{-j\pi/4} \cdot \sin(\pi/n)}{n\sqrt{2\pi\beta}} \cdot \left[\frac{1}{\cos(\pi/n) - \cos(\xi'/n)} - \frac{1}{\cos(\pi/n) - \cos(\xi'/n)}\right]$$

$$E^{T}(\phi,\phi',n) = \frac{-e^{-j\pi/4} \cdot \sin(\pi/n)}{n\sqrt{2\pi\beta}} \cdot \left[\frac{1}{\cos(\pi/n) - \cos(\xi'/n)} + \frac{1}{\cos(\pi/n) - \cos(\xi'/n)}\right]$$

$$\xi^{T} = \Phi - \Phi'$$

$$\xi^{T} = \Phi - \Phi'$$

$$\xi^{T} = \Phi + \Phi'$$

Such coefficients have singularities on the shadow boundaries, i.e. when:

$$\xi - = \phi - \phi' = \pi \quad \text{(ISB)}$$

$$\xi + = \phi + \phi' = \pi \quad \text{(RSB)}$$

Therefore also other, more complicated coefficients have been derived which do not have such singularity: the UTD (*Uniform Theory of Diffraction*) coefficients

Example (1/2)

Diffraction Coefficients Comparison: n=1.5, phi = 45 deg

Example (2/2)

UTD, considering the diffracted ray and the incident ray

Other notes on GTP

- A single ray can undergo multiple interactions. The resulting ray is therefore a polygonal line and the proper interaction coefficients must be applied for each interaction. The proper divergence factor must then be applied for the overall piecewise path.
- Reflection and transmission does not change the form of the divergence factor of a ray. Diffraction does.
- Diffraction coefficients for oblique incident and dielectric wedges have also been derived by some authors
- The interaction called "diffuse scattering" is important but is not treated here. It will be briefly treated further on.

Computation Examples: reflection

For the generic incident astigmatic wave we can write:

Reflection (II)

For a spherical incident wave the expression above becomes $(\rho_1 = \rho_2 = s')$:

$$\vec{E}_r(s) = \vec{E}^0 \frac{e^{-j\beta s'}}{s'} \cdot \underline{\mathbf{R}} \cdot \frac{s'}{s+s'} e^{-j\beta s} = \vec{E}^0 \cdot \underline{\mathbf{R}} \cdot \frac{e^{-j\beta(s+s')}}{s+s'}$$

which is equivalent to

$$\begin{bmatrix} \vec{E}_{r \ TE}(s) \\ \vec{E}_{r \ TM}(s) \end{bmatrix} = \begin{bmatrix} \Gamma_{TE} & 0 \\ 0 & \Gamma_{TM} \end{bmatrix} \cdot \begin{bmatrix} \vec{E}_{TE}^{0} \\ \vec{E}_{TM}^{0} \end{bmatrix} \cdot \underbrace{e^{-j\beta s'} \cdot s'}_{s' \ s+s'} e^{-j\beta s}$$
Divergence factor for a spherical wave spherical wave Incident field in Q_R
V. Degli-Esposti, "Urban propagation modelling and ray tracing"

Diffraction Diffraction plane β_0 **Q**_D

 $\hat{oldsymbol{eta}}_{0}^{'}$

ŝ

 \mathcal{O}

Incidence plane

Diffraction coefficients \rightarrow Diffracted field

$$\begin{bmatrix} E_{\beta_0}^d \\ E_{\phi}^d \end{bmatrix} = \begin{bmatrix} D_s & 0 \\ 0 & D_h \end{bmatrix} \begin{bmatrix} E_{\beta_0^i}^i (Q_D) \\ E_{\phi^i}^i (Q_D) \end{bmatrix} \cdot A \cdot e^{-j\beta s}$$

A is the *divergence factor* for the diffracted field. For a spherical incident wave:

$$A(s',s) = \sqrt{\frac{s'}{s \cdot (s'+s)}} \qquad \vec{E}^i(Q_D) = \vec{E}^{0i} \frac{e^{-j\beta s'}}{s'}$$

Therefore we have:

$$\begin{bmatrix} \vec{E}_{\beta_0}^d \\ \vec{E}_{\phi}^d \end{bmatrix} = \begin{bmatrix} D_s & 0 \\ 0 & D_h \end{bmatrix} \begin{bmatrix} \vec{E}_{\beta_0'}^{0i} \\ \vec{E}_{\phi'}^{0i} \end{bmatrix} \cdot \frac{1}{\sqrt{s \cdot s' \cdot (s' + s)}} \cdot e^{-j\beta(s+s')}$$

Diffraction (II)

Using the the <u>Dyadic Diffraction coefficient</u>:

$$\underline{\underline{\mathbf{D}}} = D_{\mathrm{s}} \left(\hat{\beta}_{0} \, \hat{\beta}_{0} \right) + D_{h} \left(\hat{\phi} \, \hat{\phi} \right)$$

we have

$$\overline{E}^{d} = \overline{E}^{0} \cdot \underline{\underline{D}} \cdot \frac{1}{\sqrt{s \cdot s' \cdot (s' + s)}} \cdot e^{-j\beta(s+s')}$$

Double interaction (1/2)

Reflection + Vertical Edge Diffraction

Field at the reflection point: $\vec{E}(Q_R) = \vec{E}^0 \frac{e^{-j\beta s''}}{s''}$

Double interaction (2/2)

The field at the diffraction point is:

$$\vec{E}(Q_D) = \underbrace{\vec{E}_0 \cdot \frac{e^{-j\beta s''}}{s''}}_{\vec{E}(Q_R)} \cdot \underline{\mathbf{R}} \cdot \frac{s''}{s' + s''} e^{-j\beta s'} = \vec{E}_0 \cdot \underline{\mathbf{R}} \cdot \frac{e^{-j\beta(s'+s'')}}{s' + s''}$$

Finally, the field at the RX can be computed as:

$$\vec{E}(Rx) = \vec{E}(Q_D) \cdot \underline{\mathbf{D}} \cdot \sqrt{\frac{(s'+s'')}{s[s+(s'+s'')]}} \cdot e^{-j\beta s} = \begin{pmatrix} \text{remember:} \\ A(s',s) = \sqrt{\frac{s'}{s\cdot(s'+s)}} \\ A(s',s) = \sqrt{\frac{s'}{s\cdot(s'+s)}} \\ \frac{1}{s'+s''} \cdot \sqrt{\frac{(s'+s'')}{s[s+(s'+s'')]}} \cdot e^{-j\beta(s+s'+s'')} = \\ = \vec{E}^0 \cdot \underline{\mathbf{R}} \cdot \underline{\mathbf{D}} \cdot \frac{1}{\sqrt{s(s'+s'')(s+s'+s'')}} \cdot e^{-j\beta(s+s'+s'')}$$

Superposition of multiple rays (1/3) (Multipath propagation...)

Superposition of multiple rays (2/3)

The total field at a given position P can be computed through a coherent, vectorial sum of the field of all rays reaching P (difficult to determine though...):

Moreover, the delays and angles of departure/arrival of the different ray contributions can be recorded get a multidimensional prediction. In fact the GTP, determining its trajectory, also yields the following parameters for the k-th ray:

 $s^{k} \text{ total unfolded length}$ $t^{k} = \frac{s^{k}}{c} \text{ propagation delay}$ $\chi^{k} \equiv \left(\theta_{T}^{k}, \phi_{T}^{k}\right) \text{ angles of departure}$ $\psi^{k} \equiv \left(\theta_{R}^{k}, \phi_{R}^{k}\right) \text{ angles of arrival}$

Superposition of multiple rays (3/3)

Multipath propagation \rightarrow *not only attenuation !*

Some systems can exploit multipath, others only cope with it

References

- L.Felsen, N. Marcuvitz, *Radiation and scattering of waves*, The Institute of electrical and electronics engineers (1994)
- [2] M. Born, E. Wolf, Principles of Optics, Cambridge University Press, 1993.
- [3] M. Kline, I. Kay, Electromagnetic Theory and Geometrical Optics, Interscience, New York, 1965.
- [4] T. Halliday, R. Resnick, Fisica, Casa Ed. Ambrosiana, vol. II.
- [5] H. L. Bertoni, Radio Propagation for Modern Wireless Systems, Prentice Hall, 2000.
- [6] J. B. Keller, Geometrical Theory of Diffraction, Journal of the Optical Society of America, Vol. 52, Nro 2, February 1962.
- [7] A. J. W. Sommerfeld, Optics, Academic Press, 1954
- [8] C. A. Balanis, Advanced Engineering Electromagnetics, Wiley, 1989
- [9] R. G. Kouyoumjian, *The geometrical theory of diffraction and its application* in *Numerical and Asymptotic Techniques in Electromagnetics*, R. Mittra (Ed.), Springer, New York, 1975, capitolo 6.

