A - TEORIA DELLA PROPAGAZIONE RADIO IN AMBIENTE REALE

Effetto di gas atmosferici e idrometeore
Attenuazione supplementare da gas atmosferici
Attenuazione supplementare da pioggia
Propagazione ionosferica, troposcatter
Propagazione in mezzi con disomogenità distribuita - Propagazione troposferica
Cenni di ottica geometrica in mezzi con n debolmente variabile.
Propagazione in mezzi a stratificazione piana e sferica. Propagazione troposferica, orizzonte radio e rettificazione del suolo/raggio
Propagazione in mezzi con disomogenità concentrate - Propagazione in presenza di ostacoli

Riflessione del suolo, diffrazione da knife-edge, ellissoide di Fresnel
Metodi per il calcolo della diffrazione da ostacoli

- Teoria geometrica della propagazione: trasmissione attraverso uno strato, diffrazione da spigolo. Propagazione multicammino.

Geometrical theory of propagation (I)

It is useful when propagation takes place in a region with concentrated obstacles. Obstacles are here represented as plane walls and rectilinear wedges (canonical obstacles)

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

Geometrical theory of propagation (II)

 electromagnetic constants:
Geometrical theory of propagation (III)

- Geometrical theory of propagation is an extension of Geometrical Optics, (GO) and is not limited to optical frequencies $(\lambda \rightarrow 0$ so that $\Delta n \rightarrow 0$ over $\lambda)$
- Like GO, it corresponds to an asymptotic, high-frequency approximation of basic electromagnetic theory, and is based on the ray concept
- Since GO does not account for diffraction, then diffraction is introduced through an extension called Geometrical Theory of Diffraction (GTD)
- The combination of GO and GTD, applied to radio wave propagation may be called Geometrical Theory of Propagation (GTP) and is the base of deterministic, ray propagation models (ray-tracing etc.)

Recall: waves and rays

- Wavefront: surface were the field has the same phase (varies "in phase")
- Ray: given a propagating wave, every curve that is everywhere perpendicular to the wavefront is called ray. A ray is the path of a wave. There is a mutual identification btw wave and ray
- In presence of concentrated obstacles rays are piecewise-rectilinear and wavefronts can be of various kinds (see further on)

Ex. 1 Sperical wave and rectilinear rays

Ex. 2 reflected spherical wave and piece-wise rectilinear rays

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

The spherical wave

In free space the reference wave is the spherical wave

field:

$$
\begin{array}{r}
\mathbf{E}(R)=\mathbf{E}_{0} \frac{e^{-j \beta R}}{R}=\mathbf{E}_{0} \frac{e^{-j \beta \rho_{0}}}{\rho_{0}} \frac{\rho_{0}}{R} e^{-j \beta\left(R-\rho_{0}\right)}= \\
\mathbf{E}\left(\rho_{0}\right) \frac{\rho_{0}}{R} e^{-j \beta\left(R-\rho_{0}\right)}=\mathbf{E}\left(\rho_{0}\right) \frac{\rho_{0}}{\rho_{0}+s} e^{-j \beta(s)}
\end{array}
$$

power density:

$$
S(R)=S\left(\rho_{0}\right)\left(\frac{\rho_{0}}{\rho_{0}+s}\right)^{2}
$$

The astigmatic wave: divergence factor

If the mean is homogeneous (\rightarrow rectilinear rays) [2] the generic wave's divergence factor is:

$$
A\left(\rho_{1}, \rho_{2}, s\right)=\sqrt{\frac{\rho_{1} \cdot \rho_{2}}{\left(\rho_{1}+s\right) \cdot\left(\rho_{2}+s\right)}}\left(=\sqrt{\frac{d A_{0}}{d A}}\right)
$$

- A: Divergence or Spreading factor
- ρ_{1}, ρ_{2} : curvature radii
$-\overline{\mathrm{C}_{1} \mathrm{C}_{2}}, \overline{\mathrm{C}_{3} \mathrm{C}_{4}}$: wave caustics

There are 3 main reference cases:

- Spherical wave: $\rho_{1}=\rho_{2}=\rho_{0} \quad \rightarrow \quad A=\frac{\rho_{0}}{\rho_{0}+s}$
- Cylindrical wave: $\rho_{1}=\infty, \rho_{2}=\rho_{0} \quad \rightarrow \quad A=\sqrt{\frac{\rho_{0}}{\rho_{0}+s}}$
notice that, for power conservation:
$A=\sqrt{\frac{d A_{0}}{d A}}=\sqrt{\frac{|E|^{2}}{\left|E_{0}\right|^{2}}}=\frac{|E|}{\left|E_{0}\right|}=\sqrt{\frac{1}{L}}$
L : power attenuation
- Plane wave: $\rho_{1}=\rho_{2}=\infty \rightarrow A=1$

The generic wave: amplitude and polarization

The divergence factor gives the field- (and thus power-) attenuation law along the ray. But since the field is a complex vector, we also have polarization.
The generic (astigmatic) wave in free space has the electric field:

$$
\vec{E}(s)=\underbrace{\vec{E}(0)}_{\begin{array}{c}
\text { Field a r reference } \\
\text { point }(s=0)
\end{array}} \cdot \underbrace{\sqrt[\underbrace{\frac{\rho_{1} \cdot \rho_{2}}{\left(\rho_{1}+s\right) \cdot\left(\rho_{2}+s\right)}}]{\text { Divergence factor }_{\text {Phase factor }}^{e^{-j \beta s}}}}_{\text {Propagation factor }}
$$

$$
\begin{aligned}
& \vec{E}(s)=\vec{E}_{0} \cdot \frac{\rho_{0}}{\rho_{0}+s} e^{-j \beta s} \text { (Ex: spherical wave) } \\
& =\hat{\mathbf{p}} \mathrm{K}\left(\frac{e^{-j \beta \rho_{0}}}{\rho_{0}}\right) \frac{\rho_{0}}{\rho_{0}+s} e^{-j \beta s}=\hat{\mathbf{p}} \mathrm{K} \underbrace{\left(\frac{e^{-j \beta s_{\text {tot }}}}{s_{\text {tot }}}\right)}_{\text {Propagation factor }}
\end{aligned}
$$

This expression gives the field amplitude along a ray.
The (normalized) polarization vector gives the polarization of the wave:

$$
\hat{\mathbf{p}} \triangleq \frac{\vec{E}(s)}{|\vec{E}(s)|} e^{j x}
$$

The polarization vector has the same polarization as the field but is normalized. In free space it is constant along the ray. The antenna polarization vector is the polarization vector of the field emitted by the considered antenna.

Interaction mechanisms

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

GTP basics

- GTP is based on the couple: (ray , field)
- The propagating field is computed as a set of rays interacting with building walls

- Given a ray departing from an antenna we must "follow" the ray and predict both its geometry and its field at every point until it reaches the receiver
- It is therefore necessary to predict what happens at both the trajectory and the field at each interaction with an obstacle
- For this purpose, we rely on the two GTP basic principles

GrP. basic principles

"Local field principle" (interactions)

- The wave can be locally assumed plane
- The field associated with the reflected/transmitted/ diffracted ray only depends on the electromagnetic and geometric properties of the obstacle in the vicinity of the interaction point

> "Fermat's principle" (trajectory)

- The ray trajectory is always so as to minimize path (or optical-path ...)

Ray Reflection and Transmission

radial rays spring from the transmitting antenna

- when a ray impinges on the plane surface the corresponding wave is reflected and transmitted, thus generating reflected and transmitted rays

- The incident ray trajectory is modified according to the Snell's laws of reflection (transmission). Rays and wavefronts are as if the reflected wave generated at the source image point...
- The field amplitude / phase change at the interaction point according to proper Fresnel's reflection (transmission) coefficients

Reflection and Transmission Coefficients

-TE polarization

$$
\Gamma_{T E}=\frac{\cos \theta_{i}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}} ; \tau_{T E}=1+\Gamma_{T E}
$$

-TM polarization

$$
\Gamma_{T M}=\frac{\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\left(\frac{n_{2}}{n_{1}}\right)^{2} \cos \theta_{i}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}} ; \tau_{T M}=1+\Gamma_{T M}
$$

Field formulation

Transmitted ray
(s) $\rightarrow x$

- trajectory: reflection law or Fermat's principle
- Field expression:

$$
\left[\begin{array}{c}
\vec{E}_{r}^{T E}(s) \\
\vec{E}_{r}^{T M}(s)
\end{array}\right]=\left[\begin{array}{cc}
\Gamma_{T E} & 0 \\
0 & \Gamma_{T M}
\end{array}\right] \cdot\left[\begin{array}{c}
\vec{E}_{i}^{T E}\left(P_{R}\right) \\
\vec{E}_{i}^{T M}\left(P_{R}\right)
\end{array}\right] \cdot \frac{\rho_{0}}{\rho_{0}+s} e^{-j \beta s}
$$

- direction: Snell's law or Fermat's principle

Spreading
factor

- Field expression:

$$
\left[\begin{array}{c}
\vec{E}_{t}^{T E}(s) \\
\vec{E}_{t}^{T M}(s)
\end{array}\right]=\left[\begin{array}{cc}
\tau_{T E} & 0 \\
0 & \tau_{T M}
\end{array}\right] \cdot\left[\begin{array}{l}
\vec{E}_{i}^{T E}\left(P_{R}\right) \\
\vec{E}_{i}^{T M}\left(P_{R}\right)
\end{array}\right] \cdot \frac{\rho_{0}}{\rho_{0}+s} e^{-j \beta^{\prime} s}
$$

Fresnel's coefficients

- Reflection does not change the spreading factor of the wave !!

Example: dielectric materials

θ_{I}
TE Polarization

θ_{I}
TM Polarization

Transmission through a wall (1/5)

* Hypotheses: - normal or quasi-normal incidence
- weakly lossy medium

$$
\begin{gathered}
\Gamma \approx \Gamma_{T E}=\frac{\cos \theta_{i}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}=\frac{1-\sqrt{\varepsilon_{r}}}{1+\sqrt{\varepsilon_{r}}} \\
\frac{S_{r e}}{S_{i n}}=\frac{\left|E_{r e}\right|^{2} / 2 \eta}{\left|E_{i n}\right|^{2} / 2}=\frac{\left|E_{r e}\right|^{2}}{\left|E_{i n}\right|^{2}} \approx|\Gamma|^{2}
\end{gathered}
$$

(Source: Prof. H.L. Bertoni)

Transmission through a wall $(2 / 5)$

In a lossy medium the wavenumber can be written as:
$k=\omega \sqrt{\mu_{0} \varepsilon_{c}}=\omega \sqrt{\mu_{0} \varepsilon_{0} \varepsilon_{r}}$
The complex relative dielectric constant can be written as:
$\varepsilon_{r}=\varepsilon_{r}^{\prime}-j \varepsilon_{r}^{\prime \prime}=\frac{\varepsilon}{\varepsilon_{0}}-j \frac{\sigma}{\omega \varepsilon_{0}}$
If the medium is weakly lossy ε " $\ll \varepsilon^{\prime}$.
A plane wave propagating through the lossy medium has the expression:
$\mathbf{E}=\mathbf{E}_{\mathbf{0}} e^{-j k r}=\mathbf{E}_{\mathbf{0}} e^{-(\alpha+j \beta) r} ;$ with $\mathrm{jk}=\alpha+\mathrm{j} \beta$
Thus:

$$
\begin{aligned}
& k=\omega \sqrt{\mu_{0} \varepsilon_{0} \varepsilon_{r}}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \sqrt{\varepsilon_{r}^{\prime}-j \varepsilon_{r}^{\prime \prime}}=\frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}-j \varepsilon_{r}^{\prime \prime}}= \\
& =\frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}} \sqrt{1-j \frac{\varepsilon_{r}^{\prime \prime}}{\varepsilon_{r}^{\prime}}} \approx \frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}}\left(1-j \frac{\varepsilon_{r}^{\prime \prime}}{2 \varepsilon_{r}^{\prime}}\right)
\end{aligned}
$$

Where the series expansion have been truncated at first order

Transmission through a wall (3/5)

Therefore:

$$
\begin{aligned}
& j k=\alpha+j \beta \approx \frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}}\left(\frac{\varepsilon_{r}^{\prime \prime}}{2 \varepsilon_{r}^{\prime}}+j\right) \Rightarrow \\
& \left\{\begin{array}{l}
\alpha \approx \frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}}\left(\frac{\varepsilon_{r}^{\prime \prime}}{2 \varepsilon_{r}^{\prime}}\right) \\
\beta \approx \frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}}
\end{array}\right. \\
& |\bar{E}(r)|=|\bar{E}(0)| \cdot e^{-\alpha r} \\
& S(r)=S(0) \cdot e^{-2 \alpha r}
\end{aligned}
$$

Transmission through a wall (4/5)

The reflection coefficient at normal incidence for the air-medium interface is

$$
\Gamma_{0 m}=\frac{1-\sqrt{\varepsilon_{r}}}{1+\sqrt{\varepsilon_{r}}}
$$

The reflection coefficient for the second, medium-air interface is (see the expression of the reflection coefficients for normal incidence)

$$
\Gamma_{m 0}=\frac{\sqrt{\varepsilon_{r}}-1}{1+\sqrt{\varepsilon_{r}}}=-\Gamma_{0 m}
$$

Now if we consider the first interface we have

$$
\frac{S_{r e f l 1}}{S_{i n c 1}}=\frac{\left|\vec{E}_{r e f l 1}\right|^{2}}{\left|\vec{E}_{i n 1}\right|^{2}}=\left|\Gamma_{0 m}\right|^{2}
$$

Transmission through a wall (5/5)

For power conservation we have:

$$
\begin{aligned}
& S_{\text {inc } 1}=S_{\text {refl1 }}+S_{\text {trasm } 1} \Rightarrow 1=\frac{S_{\text {refl1 }}}{S_{\text {inc1 }}}+\frac{S_{\text {trasm } 1}}{S_{\text {inc } 1}}=\left|\Gamma_{0 m}\right|^{2}+\frac{S_{\text {trasm } 1}}{S_{\text {inc } 1}} \\
& \frac{S_{\text {trasm } 1 \mathrm{1}}}{S_{\text {inc1 } 1}}=1-\left|\Gamma_{0 m}\right|^{2}
\end{aligned}
$$

Now the transmitted power at the first interface, properly multiplied by the lossymedium attenuation factor becomes the incident power at the second interface, therefore we have

$$
\frac{S_{\text {refl2 }}}{S_{\text {inc } 2}}=\left|\Gamma_{m 0}\right|^{2}=\left|\Gamma_{0 m}\right|^{2}=|\Gamma|^{2} ; \quad \frac{S_{\text {transm } 2}}{S_{\text {inc } 2}}=\frac{S_{\text {transm } 2}}{S_{\text {transm } 1} e^{-2 \alpha w}}=\frac{S_{\text {transm } 2}}{S_{\text {inc1 } 1}\left(1-|\Gamma|^{2}\right) e^{-2 \alpha w}}=1-|\Gamma|^{2}
$$

Thus:

$$
\frac{S_{\text {transm } 2}}{S_{\text {inc } 1}}=\frac{S_{\text {out }}}{S_{\text {in }}}=\left(1-|\Gamma|^{2}\right)^{2} e^{-2 \alpha w} \Rightarrow L_{t}=\frac{S_{\text {in }}}{S_{\text {out }}}=\frac{e^{2 \alpha w}}{\left(1-|\Gamma|^{2}\right)^{2}}
$$

Example of Transmission Loss

Brick wall: $\varepsilon_{r}^{\prime}=4, \varepsilon_{r}{ }^{\prime \prime}=0.2, w=20 \mathrm{~cm}$

$$
|\Gamma|^{2}=\frac{S_{r e f l}}{S_{i n c 1}} \approx\left|\frac{\sqrt{4}-1}{\sqrt{4}+1}\right|^{2}=\frac{1}{9}=0.11 \text { or }-9.6 \mathrm{~dB}
$$

at $1800 \mathrm{MHz}\left(\lambda_{o}=1 / 6 \mathrm{~m}\right): \alpha=\frac{0.2 \pi}{(1 / 6) \sqrt{4}}=1.88$

$$
\mathrm{L}_{t}=\frac{S_{\text {in }}}{S_{\text {out }}}=(1-0.11)^{2} e^{2(0.2)(1.88)}=2.7 \text { or } 4.3 \mathrm{~dB}
$$

Summary of Reflection and Transmission Loss

Theory

Wall Type	Frequency Band	Ref. loss	Trans. Loss					
Brick, exterior	$1.8-4 \mathrm{GHz}$	10 dB	10 dB					
Concrete block, interior	2.4 GHz		5 dB					
Gypsum board, interior	3.4 GHz	4 dB	2 dB		Measured	800 MHz $5-6 \mathrm{GHz}$ 5 GHz		$4-7 \mathrm{~dB}$ $9-18 \mathrm{~dB}$ with metal siding
:---	:---	:---	:---					
Brick, exterior	$4-6 \mathrm{GHz}$	10 dB	14 dB					
Concrete block, interior	$2.4 / 5 \mathrm{GHz}$		$5 / 5-10 \mathrm{~dB}$					
Gypsum board, interior	$2.4 / 5 \mathrm{GHz}$		$3 / 5 \mathrm{~dB}$					
Wooden floors	5 GHz		9 dB					
Concrete floors	900 MHz		13 dB					

(Source: Prof. H.L. Bertoni)

Geometrical Theory of Diffraction

The extension of GO to the category of diffracted rays was first introduced by J. B. Keller in 1961 and is based on the following assumptions ${ }^{[6]}$:
I. A diffracted ray is generated whenever a ray impinges on an edge (or on a vertex)
II. For every diffracted ray the Fermat's principle holds

Diffraction law: the angles between incident / diffracted ray and the edge satisfy "Snell's law applied to diffraction":

$$
\mathrm{n}_{\mathrm{i}} \cdot \sin \theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{d}} \cdot \sin \theta_{\mathrm{d}}
$$

\rightarrow If the rays are in the same material then: $\theta_{d}=\theta_{i}$;
Therefore diffracted rays ouside the wedge belong to the Keller's cone

The diffracted ray $(1 / 3)$

- In urban propagation only straight edges (local field principle) are of interest. Vertex diffraction won't be treated here
- If the impinging wave is plane (or can be approximated so for the local field principle) then the diffracted wave is cylindrical for perpendicular incidence $\left(\theta_{\mathrm{d}}=\theta_{\mathrm{i}}=\pi / 2\right)$ and conical for oblique incidence (the wavefront is a cone) [7]
- The diffracted wave is so that one caustic coincides with the edge. Therefore the divergence factor of the diffracted wave/ray is different from that of the incident wave/ray (see further on)
- The diffracted ray field can be computed by solving Maxwell's equations for a plane, cylindrical or spherical wave incident on a straight conducting edge [7, 8, 9] and somehow subtracting from the solution the incident wave and the reflected wave(s).
- Then the diffracted field is expanded in a Luneberg-Kline series from which only the first term (high frequency approx.) is kept in order to derive the diffraction coefficients

The diffracted ray $(2 / 3)$

The high frequency term has the form:

$\rho_{1}{ }^{\mathrm{d}}, \rho_{2}{ }^{\mathrm{d}}=$ curvature radii of the diffracted wave.
One caustic coincides with the edge: $\rho_{2}{ }^{\text {d }}$ corresponds to $O^{\prime}-Q_{D}$ where O^{\prime} is the reference point, origin of the coordinate s.

It is useful to choose $\mathrm{O}^{\prime}=\mathrm{Q}_{\mathrm{D}}\left(\rho_{2}{ }^{\mathrm{d}}=0 \rightarrow\right.$ simpler expression). However for power conservation reasons $\mathbf{E}^{\mathrm{d}}\left(\mathrm{O}^{\prime}\right) \rightarrow \infty$ for $\mathrm{O}^{\prime} \rightarrow \mathrm{Q}_{\mathrm{D}}$
Since $\mathbf{E}^{\mathrm{d}}(\mathrm{s})$ cannot change with the reference system, therefore it must be:

$$
\left.\lim _{\substack{O^{\prime} \rightarrow Q_{D} \\
\left(\rho_{2}^{d} \rightarrow 0\right)}}\left[\vec{E}^{d}\left(O^{\prime}\right) \cdot \sqrt{\rho_{2}^{d}}\right]=\text { finite vector } \equiv \vec{E}^{i}\left(Q_{D}\right) \cdot \mathbf{D} \leadsto \vec{E}^{d}(s)=\vec{E}^{i}\left(Q_{D}\right) \cdot \mathbf{D} \cdot A\left(\rho^{d}, s\right) \cdot e^{-j \beta s}\right) ~ \begin{aligned}
& \vec{E}^{d i t h: ~} A\left(\rho^{d}, s\right)=\sqrt{\frac{\rho^{d}}{\left(\rho^{d}+s\right) \cdot s}}
\end{aligned}
$$

D is the diffraction matrix, which contains the diffraction coefficients

The diffracted ray (3/3)

\rightarrow trajectory: Fermat' s principle
\rightarrow Field expression:
spreading factor...

$$
\left[\begin{array}{c}
E_{\beta_{0}}^{d} \\
E_{\phi}^{d}
\end{array}\right]=\left[\begin{array}{cc}
D_{s} & 0 \\
0 & D_{h}
\end{array}\right]\left[\begin{array}{c}
E_{\beta_{0}^{\prime}}^{i}\left(Q_{D}\right) \\
E_{\phi^{\prime}}^{i}\left(Q_{D}\right)
\end{array}\right] \cdot A\left(s, \rho^{d}\right) \cdot e^{-j \beta s}
$$

if the proper local reference system is adopted (see figure) then the diffraction matrix reduces to a 2×2 diagonal matrix, otherwise it's a 3×3 matrix
Φ-polarization is called "hard" (TE), β polarizationi is called "soft" (TM)

The divergence factor

If $\rho_{2}{ }^{\mathrm{d}} \rightarrow 0$ as shown, then we get: $\left(\rho_{1}{ }^{\mathrm{d}} \rightarrow \rho^{\mathrm{d}}\right.$)

$$
A\left(\rho^{d}, s\right)=\sqrt{\frac{\rho^{d}}{s \cdot\left(\rho^{d}+s\right)}}
$$

$\begin{cases}\frac{1}{\sqrt{s}} & \text { for a plane incident wave }\end{cases}$
For a straight edge we have:

$$
A\left(\rho^{\mathrm{d}}, s\right)=\left\{\begin{array}{l}
\frac{1}{\sqrt{s \cdot \sin \beta_{o}^{\prime}}} \text { for a cylindrical incident wave } \\
\sqrt{\frac{\rho^{\mathrm{d}}}{\mathrm{~s} \cdot\left(\rho^{\mathrm{d}}+\mathrm{s}\right)}}
\end{array}\right. \text { for a spherical incident wave }
$$

- For the computation of the diffraction coefficients we refer in the following to a simple case with a cylindrical incident wave.

The diffraction coefficients for a canonical 2D problem

ISB : Incidence Shadow Boundary
RSB : Reflection Shadow Boundary

R I : direct + reflected + diffracted
R II : direct + diffracted
R III : diffracted
Hypotheses:

- unlimited perfectly conducting wedge of angular width WA $=(2-n) \pi \quad(0 \leq n<2)$
- Infinite uniform linear source parallel to the edge with constant current $\mathrm{I}_{0} \mathbf{i}_{\mathbf{z}}$

cylindrical incident wave with normal incidence

The diffraction coefficients

Adopting the method described above the following Keller's diffraction coefficients are obtained (Geometrical Theory of Diffraction, GTD) [9]

$$
\begin{aligned}
& D^{S}\left(\phi, \phi^{\prime}, n\right)=\frac{-e^{-j \pi / 4} \cdot \sin (\pi / n)}{n \sqrt{2 \pi \beta}} \cdot\left[\frac{1}{\cos (\pi / n)-\cos \left(\xi^{-} / n\right)}-\frac{1}{\cos (\pi / n)-\cos \left(\xi^{+} / n\right)}\right] \\
& D^{H}\left(\phi, \phi^{\prime}, n\right)=\frac{-e^{-j \pi / 4} \cdot \sin (\pi / n)}{n \sqrt{2 \pi \beta}} \cdot\left[\frac{1}{\cos (\pi / n)-\cos \left(\xi^{-} / n\right)}+\frac{1}{\cos (\pi / n)-\cos \left(\xi^{+} / n\right)}\right] \\
& \xi^{-}=\Phi-\Phi^{\prime} \\
& \zeta^{+}=\Phi+\Phi^{\prime}
\end{aligned}
$$

Such coefficients have singularities on the shadow boundaries, i.e. when:

$$
\begin{array}{ll}
\xi_{-}=\phi-\phi^{\prime}=\pi & (\text { ISB }) \\
\xi_{+}=\phi+\phi^{\prime}=\pi & (\mathrm{RSB})
\end{array}
$$

Therefore also other, more complicated coefficients have been derived which do not have such singularity: the UTD (Uniform Theory of Diffraction) coefficients

Example (1/2)

UTD Soft Coefficient ——
Keller Soft Coefficient -
Kirchhoff Coefficient - -

Example (2/2)

UTD, considering the diffracted ray and the incident ray

Other notes on GTP

- A single ray can undergo multiple interactions. The resulting ray is therefore a polygonal line and the proper interaction coefficients must be applied for each interaction. The proper divergence factor must then be applied for the overall piecewise path.
- Reflection and transmission does not change the form of the divergence factor of a ray. Diffraction does.
- Diffraction coefficients for oblique incident and dielectric wedges have also been derived by some authors
- The interaction called "diffuse scattering" is important but is not treated here. It will be briefly treated further on.

Computation Examples: reflection

For the generic incident astigmatic wave we can write:

$$
\vec{E}_{r}(s)=\underbrace{\vec{E}\left(Q_{R}\right)}_{\begin{array}{c}
\text { field at reference } \\
\text { point }\left(\mathrm{Q}_{\mathrm{R}}, \mathrm{~s}=0\right)
\end{array}} \cdot \underbrace{\underbrace{\mathbf{R}\left(Q_{R}, \theta_{i}\right)}_{\begin{array}{c}
\text { divergence or spreading } \\
\text { factor }
\end{array}} \cdot \underbrace{\frac{\rho_{1} \cdot \rho_{2}}{\left.\sum_{1}+\rho_{1}+s\right) \cdot\left(\rho_{2}+s\right)}} \cdot \underbrace{e^{-j \beta s}}_{\text {Phase factor }}}_{\begin{array}{c}
\text { Reflection coefficient } \\
\text { (Dyadic) }
\end{array}}
$$

The use of the Dyadic Reflection coefficient [8] allows to refer to a fixed reference system

$$
\begin{aligned}
& \underline{\underline{\mathbf{R}}}=\Gamma_{/ /}\left(\hat{\mathrm{e}}_{/ / \mathrm{e}}^{\mathrm{i}} \hat{\mathbf{e}}_{/ /}^{\mathrm{r}}\right)+\Gamma_{\perp}\left(\hat{\mathrm{e}}_{\perp}^{\mathrm{i}} \hat{\mathrm{e}}_{\perp}^{\mathrm{r}}\right) \\
& (\bar{a} \bar{b}) \triangleq\left(\begin{array}{lll}
a_{b} b_{x} & a_{z} b_{y} & a_{x} b_{z} \\
a_{z} b_{x} & a_{b} b_{y} & a_{a} b_{z} \\
a_{z} b_{x} & a_{z} b_{y} & a_{z} b_{z}
\end{array}\right)
\end{aligned}
$$

Reflection (II)

For a spherical incident wave the expression above becomes ($\rho_{1}=\rho_{2}=s^{\prime}$):

$$
\vec{E}_{r}(s)=\vec{E}^{0} \frac{e^{-j \beta s^{\prime}}}{s^{\prime}} \cdot \underline{\underline{\mathbf{R}}} \cdot \frac{s^{\prime}}{s+s^{\prime}} e^{-j \beta s}=\vec{E}^{0} \cdot \underline{\underline{\mathbf{R}}} \cdot \frac{e^{-j \beta\left(s+s^{\prime}\right)}}{s+s^{\prime}}
$$

which is equivalent to

$$
\begin{aligned}
& {\left[\begin{array}{c}
\vec{E}_{r T E}(s) \\
\vec{E}_{r T M} \\
\hline
\end{array}\right]=\left[\begin{array}{cc}
\Gamma_{T E} & 0 \\
0 & \Gamma_{T M}
\end{array}\right] \cdot\left[\begin{array}{l}
\vec{E}_{T E}^{0} \\
\vec{E}_{T M}^{0}
\end{array}\right] \cdot \frac{e^{-j \beta 5}}{s^{\prime}} \frac{s^{\prime}}{S+s^{\prime}} e^{-j \beta s}} \\
& \text { V. Degli-Esposti, "Urban propagation modelling and ray tracing" }
\end{aligned}
$$

Divergence factor for a spherical wave

Diffraction

Incidence plane V

Diffraction coefficients \rightarrow Diffracted field

$$
\left[\begin{array}{c}
E_{\beta_{0}}^{d} \\
E_{\phi}^{d}
\end{array}\right]=\left[\begin{array}{cc}
D_{s} & 0 \\
0 & D_{h}
\end{array}\right]\left[\begin{array}{c}
E_{\beta_{0}^{\prime}}^{i}\left(Q_{D}\right) \\
E_{\phi^{\prime}}^{i}\left(Q_{D}\right)
\end{array}\right] \cdot A \cdot e^{-j \beta s}
$$

A is the divergence factor for the diffracted field. For a spherical incident wave:
$A\left(s^{\prime}, s\right)=\sqrt{\frac{s^{\prime}}{s \cdot\left(s^{\prime}+s\right)}} \quad \vec{E}^{i}\left(Q_{D}\right)=\vec{E}^{0 i} \frac{e^{-j \beta s^{\prime}}}{s^{\prime}}$
Therefore we have:
$\left[\begin{array}{c}\vec{E}_{\beta_{0}}^{d} \\ \vec{E}_{\phi}^{d}\end{array}\right]=\left[\begin{array}{cc}D_{s} & 0 \\ 0 & D_{h}\end{array}\right]\left[\begin{array}{c}\vec{E}_{\beta_{0}^{\prime}}^{0 i} \\ \vec{E}_{\phi^{\prime}}^{0 i}\end{array}\right] \cdot \frac{1}{\sqrt{s \cdot s^{\prime} \cdot\left(s^{\prime}+s\right)}} \cdot e^{-j \beta\left(s\left(s s^{\prime}\right)\right.}$
V. Degli-Esposti, "Urban propagation modelling and ray tracing"

Diffraction (II)

Using the the Dyadic Diffraction coefficient:

$$
\underline{\underline{\mathbf{D}}=D_{\mathrm{s}}\left(\hat{\beta}_{0}^{\prime} \hat{\beta}_{0}\right)+D_{h}\left(\hat{\phi}^{\prime} \hat{\phi}\right), ~}
$$

we have

$$
\bar{E}^{d}=\bar{E}^{0} \cdot \underline{\underline{\mathbf{D}}} \cdot \frac{1}{\sqrt{s \cdot s^{\prime} \cdot\left(s^{\prime}+s\right)}} \cdot e^{-j \beta\left(s+s^{\prime}\right)}
$$

Incidence plane

Double interaction (1/2)

Reflection + Vertical Edge Diffraction

Field at the reflection point: $\vec{E}\left(Q_{R}\right)=\vec{E}^{0} \frac{e^{-j \beta s^{\prime \prime}}}{s^{\prime \prime}}$

Double interaction (2/2)

The field at the diffraction point is:

$$
\vec{E}\left(Q_{D}\right)=\underbrace{\vec{E}_{0} \cdot \frac{s^{-j \beta s^{\prime \prime}}}{s^{\prime \prime}}}_{\vec{E}\left(Q_{R}\right)} \cdot \underline{\underline{\mathbf{R}}} \cdot \frac{s^{\prime \prime}}{s^{\prime}+s^{\prime \prime}} e^{-j \beta s^{\prime}}=\vec{E}_{0} \cdot \underline{\underline{\mathbf{R}}} \cdot \frac{e^{-j \beta\left(s^{\prime} s^{\prime \prime}\right)}}{s^{\prime}+s^{\prime \prime}}
$$

Finally, the field at the RX can be computed as:

$$
\begin{aligned}
& \vec{E}(R x)=\vec{E}\left(Q_{D}\right) \cdot \underline{\underline{\mathbf{D}}} \cdot \sqrt{\frac{\left(s^{\prime}+s^{\prime \prime}\right)}{s\left[s+\left(s^{\prime}+s^{\prime \prime}\right)\right]}} \cdot e^{-j \beta s}= \\
& =\vec{E}^{0} \cdot \underline{\underline{\mathbf{R}} \cdot \underline{\mathbf{D}} \cdot \frac{1}{s^{\prime}+s^{\prime \prime}} \cdot \sqrt{\frac{\left(s^{\prime}+s^{\prime \prime}\right)}{s\left[s+\left(s^{\prime}+s^{\prime \prime}\right)\right]}} \cdot e^{-j \beta\left(s+s^{\prime}+s^{\prime \prime}\right)}=} \quad\left(\left.\begin{array}{l}
\text { remember: } \\
\left.A\left(s^{\prime}, s\right)=\sqrt{\frac{s^{\prime}}{s \cdot\left(s^{\prime}+s\right)}}\right) \\
=\vec{E}^{0} \cdot \underline{\underline{\mathbf{R}}} \cdot \underline{\underline{\mathbf{D}}} \cdot \frac{1}{\sqrt{s\left(s^{\prime}+s^{\prime \prime}\right)\left(s+s^{\prime}+s^{\prime \prime}\right)}} \cdot e^{-j \beta\left(s+s^{\prime}+s^{\prime \prime}\right)}
\end{array} \right\rvert\, \quad l\right.
\end{aligned}
$$

Superposition of multiple rays (1/3)

(Multipath propagation...)

Superposition of multiple rays $(2 / 3)$

The total field at a given position P can be computed through a coherent, vectorial sum of the field of all rays reaching P (difficult to determine though...):

$$
\bar{E}(P)=\sum_{k=1}^{N_{n}} \bar{E}^{k}(P)
$$

Moreover, the delays and angles of departure/arrival of the different ray contributions can be recorded get a multidimensional prediction. In fact the GTP, determining its trajectory, also yields the following parameters for the k-th ray:

$$
\begin{aligned}
& s^{k} \text { total unfolded length } \\
& t^{k}=s^{k} / c \text { propagation delay } \\
& \chi^{k} \equiv\left(\theta_{T}^{k}, \phi_{T}^{k}\right) \text { angles of departure } \\
& \psi^{k} \equiv\left(\theta_{R}^{k}, \phi_{R}^{k}\right) \text { angles of arrival }
\end{aligned}
$$

Superposition of multiple rays (3/3)

Multipath propagation \rightarrow not only attenuation !

Some systems can exploit multipath, others only cope with it

References

[1] L .Felsen, N. Marcuvitz, Radiation and scattering of waves, The Institute of electrical and electronics engineers (1994)
[2] M. Born, E. Wolf, Principles of Optics, Cambridge University Press, 1993.
[3] M. Kline, I. Kay, Electromagnetic Theory and Geometrical Optics, Interscience, New York, 1965.
[4] T. Halliday, R. Resnick, Fisica, Casa Ed. Ambrosiana, vol. II.
[5] H. L. Bertoni, Radio Propagation for Modern Wireless Systems, Prentice Hall,2000.
[6] J. B. Keller, Geometrical Theory of Diffraction, Journal of the Optical Society of America, Vol. 52, Nro 2, February 1962.
[7] A. J. W. Sommerfeld, Optics, Academic Press, 1954
[8] C. A. Balanis, Advanced Engineering Electromagnetics, Wiley, 1989
[9] R. G. Kouyoumjian, The geometrical theory of diffraction and its application in Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra (Ed.), Springer, New York, 1975, capitolo 6.

