C – IL CANALE RADIOMOBILE

- Caratterizzazione deterministica del canale radiomobile
 - Fuzioni di trasferimento del canale: caso statico e dinamico
 - Fading piatto e selettivo
 - I parametri sintetici (delay-spread, banda di coerenza ecc.).
 - Estensione al dominio spaziale
 - Autocorrelazioni
 - Esempi
- Tecniche di diversità, MIMO, e space-time coding
 - Tecniche di diversità
 - Matrice di canale e MIMO
 - Multiplexing gain e cenni a space-time coding.

Synthetic channel parameters (1/4)

Let's consider a fixed sounding time t=0, therefore we get $h(0,\xi)=h(\xi)$. <u>Notice that $h(\xi)$ is not a sequence of Dirac's impulses in real life, 'cause</u> <u>real channels have a limited bandwidth:</u>

$$h(\xi) = h_i(\xi) * h_a(\xi)$$

where:

 $h_i(\xi)$ ideal impulse response of the propagation channel $h_a(\xi)$ impulse response of the antennas, amplifiers and mo-dem

Power-delay profile

The normalized **power-delay profile** can be defined as:

$$p(\xi) = \frac{\left|h(\xi)\right|^2}{\int \left|h(\xi)\right|^2 d\xi} \quad [W/s]; \quad \text{it's normalized: } \int p(\xi) d\xi = 1$$

If a statistical evaluation of $p(\xi)$ in a given environment is needed, then averaging M different realizations/samples of $p(\xi)$ we get:

$$\overline{p}(\xi) \approx \frac{1}{M} \sum_{k=1}^{M} p^{k}(\xi)$$

(average power-delay profile)

Power-delay profile (alternative definition)

Power-Doppler profile

Similarly, at a frequency f=0, using F(v,0)=F(v) the normalized <u>power-</u> <u>**Doppler profile**</u> can be defined so that:

$$p_{v}(v) = \frac{\left|F(v)\right|^{2}}{\int \left|F(v)\right|^{2} dv} \quad [W/Hz] \qquad \overline{p}_{v}(v) \approx \frac{1}{M} \sum_{k=1}^{M} p_{k}^{v}(v)$$

Power-profiles, also called power-densities or power spectra can be defined on domains were the transfer function is a (limited) energy-signal (i.e. δ -kind in the discrete case).

In our case therefore we have power profiles in the excess delay and in the Doppler frequency domains

Dispersion parameters

RMS delay spread (DS)

RMS Doppler spread (W)

$$DS = \sqrt{\int p(\xi)(\xi - T_{M0})^2 d\xi} \qquad T_{M0} = \int p(\xi)\xi d\xi \qquad W = \sqrt{\int p_v(v)(v - W_0)^2 dv} \qquad W_0 = \int p_v(v)v dv$$

DS and W are nothing but the standard deviations of p and p, interpreted as pdf's.

An estimate of coherence bandwidth and coherence time can be derived:

<u>Coherence bandwidth</u>	Coherence time
$B_c \simeq \frac{1}{DS}$	$T_c \simeq \frac{1}{W}$

Usually, average versions of DS, W, B_c , T_c are derived using the corresponding average power profiles.

Discrete case

Since $h(\xi)$ is a discrete function which is defined only for $\xi = \{t_i\}$, and therefore the impulses do not overlap, we have:

$$|h(\xi)| = \left|\sum_{i=1}^{N_r} \rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}\right| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i + \theta_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i \,\delta(\xi - t_i) e^{j(-2\pi f_0 \cdot t_i)}| = \sum_{i=1}^{N_r} |\rho_i$$

then

$$\left|h(\xi)\right|^{2} = \left(\sum_{i=1}^{N_{r}} \left|\rho_{i}\right| \cdot \delta(\xi - t_{i})\right) \cdot \left(\sum_{i=1}^{N_{r}} \left|\rho_{i}\right| \cdot \delta(\xi - t_{i})\right) = \sum_{i=j=1}^{N_{r}} \rho_{i}^{2} \cdot \delta(\xi - t_{i})$$

were the last equal sign is due to the fact that the double products at the lefthand side are non-zero only when i=j. Also, for simplicity we have assumed that $\delta^2(\xi - t_i) = \delta(\xi - t_i)$

Discrete case – Power profiles

Therefore we get the power-deplay profile:

$$p(\xi) = \frac{\sum_{i=1}^{N} \rho_i^2 \,\delta\big(\xi - t_i\big)}{\int \sum_{i=1}^{N} \rho_i^2 \,\delta\big(\xi - t_i\big) d\xi} = \frac{\sum_{i=1}^{N} \rho_i^2 \,\delta\big(\xi - t_i\big)}{\sum_{i=1}^{N} \rho_i^2 \,\int \delta\big(\xi - t_i\big) d\xi} \Rightarrow p(\xi) = \frac{\sum_{i=1}^{N} \rho_i^2 \,\delta\big(\xi - t_i\big)}{\sum_{i=1}^{N} \rho_i^2}$$

And with a similar procedure we can get the power-Doppler profile:

$$p_{v}(v) = \frac{\sum_{i=1}^{N} \rho_{i}^{2} \delta(v - f_{i})}{\sum_{i=1}^{N} \rho_{i}^{2}} \quad \text{(power-Doppler profile)}$$

Of course these profiles can be averaged to get estimates of the corresponding average functions.

Discrete case - dispersion parameters

Discrete DS and W can be directly derived from the power-delay and power-Doppler profiles:

$$TM_{0} = \sum_{i=1}^{N} t_{i} \cdot p_{i}$$

$$DS = \sigma_{\xi} = \sqrt{\sum_{i=1}^{N} (t_{i} - TM_{0})^{2} \cdot p_{i}}$$
 where: $p_{i} = \frac{\rho_{i}^{2}}{P_{TOT}} = \frac{\rho_{i}^{2}}{\sum_{i=1}^{N} \rho_{i}^{2}}$

And:

$$W_{0} = \sum_{i=1}^{N} f_{i} \cdot p_{i}$$
$$W = \sigma_{v} = \sqrt{\sum_{i=1}^{N} (f_{i} - W_{0})^{2} \cdot p_{i}}$$

Other parameters can be introduced which refer to space instead of excess delay or doppler frequency. Thus a so called *multidimensional characterization of the mobile radio channel* can be derived, in both a statistical (through statistical/average functions) and deterministic way (measured or simulated data).

Example of power-delay profile

Example of power-Doppler profile

What is multidimensional propagation characterization?

- Radio propagation characterization in terms of coverage, path-loss, pathgain or received power is usually called *narrowband characterization*
- Radio propagation characterization in terms of power-delay profile, delay spread, power-Doppler profile, Doppler spread, Coherence bandwidth or Coherence time, frequency response, etc. is usually called *wideband characterization*
- Radio propagation characterization in terms of all of the previous parameters and also in terms of spatial parameters (angle of arrival/ emission, power-angle profiles, angle spread, etc.) is called *multidimensional characterization*
- In short: multidimensional characterization is the characterization of multipath propagation with respect to all domain dimensions: amplitude, time, frequency, Doppler frequency, space

Extension to the angle domain (1/2)

Let's consider the low-pass channel impulse response:

$$h(t,\xi) = \sum_{i} \rho_i \delta\left[\xi - t_i\right] e^{j\left\{2\pi f_i t - 2\pi f_0 t_i + \vartheta_i\right\}}$$

If, for instance, the azimuth angle of arrival φ is considered then since the signal arrives from discrete angles φ_i corresponding to paths, it is straightforward to get an angle-dependent version of h:

$$h(t,\xi,\phi) = \sum_{i} \rho_{i} \delta\left[\xi - t_{i}\right] \delta\left[\phi - \phi_{i}\right] e^{j\left\{2\pi f_{i}t - 2\pi f_{0}t_{i} + \vartheta_{i}\right\}}$$

Of course the same Dirac's impulse-dependance also appears in the other transfer functions, e.g:

$$H(t,f,\phi) = \sum_{i} \rho_{i} \delta \left[\phi - \phi_{i} \right] e^{j \left\{ 2\pi f_{i} t - 2\pi (f + f_{0}) t_{i} + \vartheta_{i} \right\}}$$

Extension to the angle domain (2/2)

If $H(\phi)=H(0,0, \phi)$, then a **<u>power-azimuth profile</u>** can be defined:

$$p_{\phi}(\phi) = \frac{\left|H(\phi)\right|^{2}}{\int \left|H(\phi)\right|^{2} d\phi};$$

In the ideal case the power-azimuth profile has the simple form:

$$\left|H\left(\phi\right)\right| = \sum_{i=1}^{N} \rho_{i} \,\delta\left(\phi - \phi_{i}\right) \implies p_{\phi}\left(\phi\right) = \frac{\sum_{i=1}^{N} \rho_{i}^{2} \,\delta\left(\phi - \phi_{i}\right)}{\sum_{i=1}^{N} \rho_{i}^{2}} = \sum_{i=1}^{N} p_{i} \,\delta\left(\phi - \phi_{i}\right)$$

Similarly, a **power-elevation profile** can be derived. Through the power-azimuth profile the Azimuth-Spread (AS) can be defined

Azimuth-Spread definition

Mean angle (azimuth) of arrival:

$$\overline{\phi} = \int_{0}^{2\pi} \phi p_{\phi}(\phi) d\phi \quad \text{with } p_{\phi}(\phi) = power - azimuth \ profile$$

RMS Azimuth Spread:

$$AS = \sigma_{\phi} = \sqrt{\int_{0}^{2\pi} \left(\phi - \overline{\phi}\right)^{2} p_{\phi}\left(\phi\right) d\phi}$$

In the discrete case we have:

$$AS = \sqrt{\sum_{i=1}^{N} p_i \cdot \left(\phi_i - \overline{\phi}\right)^2}$$

Azimuth Spread problem

Example: 2 paths with equal power and different directions of arrival, f_A and f_B

$$p_{\phi}(\phi) = \frac{1}{2} \delta(\phi - \phi_{A}) + \frac{1}{2} \delta(\phi - \phi_{B})$$

2 different reference systems: Oxy and Ox' y'

The azimuth angles are measured from the x and x' axis counterclockwise

Adopting the reference system Oxy, we have:

$$\phi_A = 345^\circ \qquad \phi_B = 15^\circ$$
$$\sigma_{\phi} = 165^\circ$$

 $\sigma_{\phi} = 15^{\circ}$

Adopting the reference system Ox'y', we have: $\phi_A = 165^{\circ}$, $\phi_B = 195^{\circ}$

 $\left| \overline{\phi} = 180^{\circ} \right|$

 $|\overline{\phi}| = 180^{\circ}$

v′ ¥

The reference system yielding the minimum spread should always be adopted

3D Angle-spread

Each direction can be represented by a unit vector $\vec{\Omega} = \vec{\Omega}(\theta, \phi)$. The initial point of $\vec{\Omega}$ is anchored at the reference location O, while its tip is located on a sphere of unit radius centered on O (see figure)

3D Angle-spread (II)

Mean Direction Of Arrival (DOA):

$$\left\langle \vec{\Omega} \right\rangle = \int_{4\pi} \vec{\Omega} p_{\Omega} \left(\vec{\Omega} \right) d\Omega$$
 $p_{\Omega} \left(\vec{\Omega} \right)$ 3D power-angle profile

3D angle spread^[*]:

$$AS^{3D} = \sigma_{\vec{\Omega}} = \sqrt{\int_{4\pi} \left| \vec{\Omega} - \left\langle \vec{\Omega} \right\rangle \right|^2} p_{\Omega} \left(\vec{\Omega} \right) d\Omega = \sqrt{\left\langle \left| \vec{\Omega} \right|^2 \right\rangle - \left| \left\langle \vec{\Omega} \right\rangle \right|^2} = \sqrt{1 - \left| \left\langle \vec{\Omega} \right\rangle \right|^2}$$

(the last equality results from: $|\vec{\Omega}| = 1$)

In the discrete case the definitions above become:

$$\left\langle \vec{\Omega} \right\rangle = \sum_{k=1}^{N} p_k \vec{\Omega}_k$$

$$\sigma_{\vec{\Omega}} = \sqrt{\sum_{k=1}^{N} \left| \vec{\Omega} - \left\langle \vec{\Omega} \right\rangle \right|^2 p_k} = \sqrt{1 - \left| \left\langle \vec{\Omega} \right\rangle \right|^2}$$

3D Angle-spread (III)

 ${}_{\circ}{}_{$

 $\mathcal{O}_{\vec{\Omega}}$ provides a 3D description of the angle dispersion of the channel.

▶ Notice that, in general, results: $\sigma_{\vec{\Omega}} \in [0, 1]$

Therefore it has the meaning of percentage of the whole solid angle

A completely similar formulation holds for the angle of departure

Extension to the space domain (1/2)

Let's consider the basic low-pass channel transfer function:

$$H(t,f) = \sum_{i} \rho_{i} e^{j\left\{2\pi f_{i}t - 2\pi (f+f_{0})t_{i} + \vartheta_{i}\right\}}$$

It is useful to consider the space domain, for example in terms of the position of the receiver $\mathbf{r}=(x,y,z)$. It is known that the channel changes over small-scale \mathbf{r} changes (e.g. fast fading). Therefore we can assume:

$$H(t, f, \mathbf{r}) = \sum_{i} \rho_{i} f_{i}(\mathbf{r}) e^{j\left\{2\pi f_{i}t - 2\pi (f+f_{0})t_{i} + \vartheta_{i}\right\}}$$

It is enough to note here that r-dependecy must be of the e-kind since angle dependency is of the δ -kind. We can have for example (typical Rayleigh fading pattern):

$$|\mathbf{H}(\mathbf{r})| \propto \left| \sum_{i} f_{i}(\mathbf{r}) \right| \left[\int_{\mathbf{W}} \int_{\mathbf$$

Space, r V. Degli-Esposti, "Propagazione e pianificazione... LS"

Extension to the space domain (2/2)

<u>The space-dependance is Fourier-related to the angle dependance.</u> <u>It can be shown for example that H(x,y) on a plane is a 2-D Fourier transform of the</u> <u>corresponding $H(\theta, \varphi)$ (Fourier's optics, not covered here).</u>

<u>Therefore the space domain can be defined e-kind while the angle domain can be defined δ -kind</u>

Examples:

1 path case:
$$p_{\phi}(\phi) = \delta(\phi - \phi_0) \implies f(\mathbf{r}) = \text{constant}$$

uniform 2D case:
$$p_{\phi}(\phi) = \frac{1}{2\pi} \implies \left| \sum_{i} f_{i}(\mathbf{r}) \right| \approx \text{random Rayleigh fading (no dim.)}$$

Jakes Model

Space dependence of the envelope (es: $|H(\mathbf{r})|$) is what is called elsewhere fast fading. If fading is flat in frequency, absolute time, can still be "selective" in space.

Envelope correlations (1/5)

It is useful to define <u>transfer function's envelope-correlations</u>. Considering the <u>module of</u> <u>the generic transfer function</u> |M(z)| in a e-kind domain z, the domain span Δz and the average value $|\overline{M}|_{\Delta z}$ over Δz we have:

<u>"z-wise" correlation (envelope correlation)</u>

$$R_{z}\left(\delta\right) = \frac{\int \left[\left|M\left(z\right)\right| - \left|\bar{M}\right|_{\Delta z}\right] \left[\left|M\left(z+\delta\right)\right| - \left|\bar{M}\right|_{\Delta z}\right] dz}{\int \left[\left|M\left(z\right)\right| - \left|\bar{M}\right|_{\Delta z}\right]^{2} dz}; \quad R_{z}\left(0\right) = 1, \ -1 < R_{z}\left(\delta\right) \le 1$$
$$\lim_{\delta \to \infty} \left\{R_{z}\left(\delta\right)\right\} = 0$$

Especially absolute time, frequency and space correlations are useful. The last one is fundamental for diversity techniques and MIMO.

Envelope correlations (2/5)

Ex: frequency correlation

$$R_{f}\left(w\right) = \frac{\int \left[\left|H\left(f\right)\right| - \left|\bar{H}\right|_{\Delta f}\right] \left[\left|H\left(f + w\right)\right| - \left|\bar{H}\right|_{\Delta f}\right] df}{\int _{\Delta f} \left[\left|H\left(f\right)\right| - \left|\bar{H}\right|_{\Delta f}\right]^{2} df}$$

Space correlation (along the x direction)

$$R_{x}(l) = \frac{\int \left[\left| H(x) \right| - \left| \overline{H} \right|_{\Delta x} \right] \left[\left| H(x+l) \right| - \left| \overline{H} \right|_{\Delta x} \right] dx}{\int \left[\left| H(x) \right| - \left| \overline{H} \right|_{\Delta x} \right]^{2} dx}$$

Envelope correlations (3/5)

Ex. space correlation in a Rayleigh environment, i.e. with uniform 2D power-angle distribution with $p_{\phi}(\phi)=1/2\pi$ is:

$$R_{x}(l) = J_{0}\left(\frac{2\pi l}{\lambda}\right)$$

With J_0 the zero order Bessel's function of the first kind. This means that the signal received from two Rx's $\lambda/2$ apart is nearly uncorrelated (see figure), and this can be useful to decrease fast fading effects

Envelope correlations (4/5)

Frequency correlation and time correlation allow a rigorous definition of coherence bandwidth and coherence time.

Given a reference, residual frequency correlation "a", then <u>coherence bandwidth</u> is:

$$B_C^{(a)} = \overline{w} \text{ with } R_f(w) \le a \text{ for } w \ge \overline{w}$$

Similarly, given a reference, residual time correlation "a", then <u>coherence time</u> is :

$$T_C^{(a)} = \overline{t} \quad with \quad R_t(t) \le a \quad \text{for } t \ge \overline{t}$$

Coherence distance L_e can also be defined in the following way:

$$L_C^{(a)} = \overline{l} \quad with \quad R_x(l) \le a \quad \text{for } l \ge \overline{l}$$

Envelope correlations (5/5)

The higher the coherence distance L_c the lower the angle spread. All considered we have:

$$B_{c}^{0.1} \simeq \frac{1}{\sigma_{\xi}} \qquad T_{c}^{0.1} \simeq \frac{1}{\sigma_{v}} \qquad L_{c}^{0.1} \simeq \frac{1}{\sigma_{\vec{\Omega}}} \approx \frac{\lambda}{4} \frac{1}{\sigma_{\vec{\Omega}}}$$

Examples: ray tracing simulations

The scenario – central Helsinki 3600 3500 Π 0 . 3400 G 3300 3200 Water 3100 3000 2900 \cap 2800 B 2700 2800 3000 3200 2200 2400 2600 3400 3600 3800

- Dense urban area
- TX: 3m above rooftop
- Rx on a trolley

 $h \approx 1.5m$

• RT simulation with only 3 events

Route EF (1/3) ^[*]

[*] measurements by Helsinki University of Technology

Route EF (2/3)

Route EF (3/3)

azimuth-distance plot

measured [*]

V. Degli-Esposti, "Propagazione e pianificazione... LS"

Route GH

azimuth-distance plot

measured [*]

RT simulated

Multidimensional prediction by ray tracing Example

Helsinki route GH: azimuth-delay animation

(RT simulation only)

