
•  Caratterizzazione deterministica del canale radiomobile 
•  Fuzioni di trasferimento del canale: caso statico e dinamico 
•  Fading piatto e selettivo 
•  I parametri sintetici (delay-spread, banda di coerenza ecc.).  
•  Estensione al dominio spaziale 
•  Autocorrelazioni 
•  Esempi 

•  Tecniche di diversità, MIMO, e space-time coding 
•  Tecniche di diversità 
•  Matrice di canale e MIMO 
•  Multiplexing gain e cenni a space-time coding. 

C – IL CANALE RADIOMOBILE 
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 Let’s consider a fixed sounding time t=0, therefore we get h(0,ξ)=h(ξ).	

	
Notice that h(ξ) is not a sequence of Dirac’s impulses in real life, ‘cause 
real channels have a limited bandwidth: 

 

 
h ξ( ) = hi ξ( )∗ha ξ( )

 where:  
 hi(ξ) ideal impulse response of the propagation channel 
 ha(ξ) impulse response of the antennas, amplifiers and mo-dem 

Synthetic channel parameters (1/4) 

Es: 
|hi(ξ)| 

ξ ξ

|h(ξ)| 

ξ

|ha(ξ)| 

*
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  The normalized power-delay profile can be defined as: 

p ξ( ) = h ξ( ) 2

h ξ( ) 2
dξ∫

  [W/s];       it's normalized: p ξ( )dξ =1∫

 If a statistical evaluation of p(ξ) in a given environment is needed, then 
averaging M different realizations/samples of p(ξ) we get: 

( ) ( )
1

1 M
k

k
p p

M
ξ ξ

=

≈ ∑

Power-delay profile 

 (average power-delay profile) 



V. Degli-Esposti, “Propagazione e pianificazione… LS” 

 
h ξ( )

Power-delay profile  (alternative definition) 

 
H f( )  

C f( )
 
p ξ( )

F -1F

(time power-spectrum) 

(frequency correlation) 
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 Similarly, at a frequency f=0, using F(ν,0)=F(ν) the normalized power-
Doppler profile can be defined so that: 

pν ν( ) = F ν( ) 2

F ν( ) 2
dν∫

  [W/Hz] ( ) ( )
1

1 M

k
k

p p
M

ν
ν ν ν

=

≈ ∑

 Power-profiles, also called power-densities or power spectra can be 
defined on domains were the transfer function is a (limited) energy-
signal (i.e. δ-kind in the discrete case). 
 In our case therefore we have power profiles in the excess delay and in 
the Doppler frequency domains 

Power-Doppler profile 
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Dispersion parameters 
RMS delay spread (DS) 

( )( ) ( )2
0 0M MDS p T d T p dξ ξ ξ ξ ξ ξ= − =∫ ∫

RMS Doppler spread (W) 

( )( ) ( )2
0 0W p W d W p dν νν ν ν ν ν ν= − =∫ ∫

 DS and W are nothing but the standard deviations of p and pν interpreted as pdf’s. 
  

 
 An estimate of coherence bandwidth and coherence time can be derived: 

1
cB DS
 1

cT W


Coherence bandwidth Coherence time 

 Usually, average versions of DS, W, Bc, Tc are derived using the corresponding 
average power profiles. 



h ξ( ) = ρi δ ξ − ti( )e j −2π f0 ⋅ti+θi( )

i=1

Nr

∑

Since h(ξ) is a discrete function which is defined only for ξ={ti}, and therefore 
the impulses do not overlap, we have: 

h ξ( ) = ρi δ ξ − ti( )e j −2π f0 ⋅ti+θi( )

i=1

Nr

∑ = ρi δ ξ − ti( )e j −2π f0 ⋅ti+θi( )

i=1

Nr

∑ = ρi δ ξ − ti( )
i=1

Nr

∑

h ξ( ) 2 = ρi ⋅δ ξ − ti( )
i=1

Nr

∑⎛⎝⎜
⎞
⎠⎟
⋅ ρi ⋅δ ξ − ti( )

i=1

Nr

∑⎛⎝⎜
⎞
⎠⎟
= ρi

2 ⋅δ ξ − ti( )
i= j=1

Nr

∑

Discrete case 
|h(ξ)| 

ξ ti 

ρi 

were the last equal sign is due to the fact that the double products at the left-
hand side are non-zero only when i=j. Also, for simplicity we have assumed 
that δ 2 ξ − ti( ) =  δ ξ − ti( )

then 
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Discrete case – Power profiles 

  

p ξ( ) =
ρi

2δ ξ − ti( )
i=1

N

∑

ρi
2δ ξ − ti( )dξ

i=1

N

∑∫
=

ρi
2δ ξ − ti( )

i=1

N

∑

ρi
2 δ ξ − ti( )dξ∫

i=1

N

∑
⇒ p ξ( ) =

ρi
2δ ξ − ti( )

i=1

N

∑

ρi
2

i=1

N

∑

And with a similar procedure we can get the power-Doppler profile: 

( )
( )2

1

2

1

(power-Doppler profile)

N

i i
i

N

i
i

f
pν

ρ δ ν
ν

ρ

=

=

−
=
∑

∑

Therefore we get the power-deplay profile: 

Of course these profiles can be averaged to get estimates of the 
corresponding average functions. 
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 Discrete DS and W can be directly derived from the power-delay and power-
Doppler profiles: 

  
TM0 = ti ⋅ pi

i=1

N

∑
  
DS =σξ = ti −TM0( )2

⋅ pi
i=1

N

∑
2 2

2

1

i i
i N

TOT
i

i

p
P
ρ ρ

ρ
=

= =
∑

where: 

Discrete case -  dispersion parameters 

 And: 

0
1

N

i i
i

W f p
=

= ⋅∑ ( )20
1

N

i i
i

W f W pνσ
=

= = − ⋅∑
  
 Other parameters can be introduced which refer to space instead of excess delay 
or doppler frequency. Thus a so called multidimensional characterization of 
the mobile radio channel can be derived, in both a statistical (through 
statistical/average functions) and deterministic way (measured or simulated 
data). 



Example of power-delay profile 



Example of power-Doppler profile 
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What is multidimensional 
propagation characterization? 

•  Radio propagation characterization in terms of coverage, path-loss, path-
gain or received power is usually called narrowband characterization 

•  Radio propagation characterization in terms of power-delay profile, delay 
spread, power-Doppler profile, Doppler spread, Coherence bandwidth or 
Coherence time, frequency response, etc. is usually called wideband 
characterization 

•  Radio propagation characterization in terms of all of the previous 
parameters and also in terms of spatial parameters (angle of arrival/
emission, power-angle profiles, angle spread, etc.)  is called 
multidimensional characterization 

•  In short: multidimensional characterization is the characterization of 
multipath propagation with respect to all domain dimensions: amplitude, 
time, frequency, Doppler frequency, space 

 
 

MIMO 
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Extension to the angle domain (1/2) 
Let’s consider the low-pass channel impulse response: 

[ ] { }02 2( , )  i i ij f t f t
i i

i
h t t e π π ϑξ ρ δ ξ − += −∑

If, for instance, the azimuth angle of arrival ϕ is considered then since the signal arrives 
from discrete angles ϕi corresponding to paths, it is straightforward to get an angle-
dependent version of h: 

[ ] [ ] { }02 2( , , )  i i ij f t f t
i i i

i
h t t e π π ϑξ φ ρ δ ξ δ φ φ − += − −∑

Of course the same Dirac’s impulse-dependance also appears in the other transfer 
functions, e.g: 

H (t, f ,φ) = ρiδ φ −φi⎡⎣ ⎤⎦e
j 2π fit−2π f + f0( )ti+ϑi{ }

i
∑  
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Extension to the angle domain (2/2) 
If H(ϕ)=H(0,0, ϕ), then a power-azimuth profile can be defined: 

In the ideal case the power-azimuth profile has the simple form: 

( ) ( )
( )

2

2 ;       
H

p
H d

φ

φ
φ

φ φ
=
∫

( ) ( ) ( )
( )

( )
2

1

21 1

1

N

i iN N
i

i i i iN
i i

i
i

H p pφ

ρ δ φ φ
φ ρ δ φ φ φ δ φ φ

ρ

=

= =

=

−
= − ⇒ = = −

∑
∑ ∑

∑

Similarly, a power-elevation profile can be derived. Through the power-azimuth profile 
the Azimuth-Spread (AS) can be defined 
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 Mean angle (azimuth) of arrival: 
 
 
 

 RMS Azimuth Spread: 
 
 
 
 

 In the discrete case we have: 
 
 
 
 
 

  

( ) ( )
2

2

0

AS p d
π

φ φσ φ φ φ φ= = −∫

( )2
1

N

i i
i

AS p φ φ
=

= ⋅ −∑

Azimuth-Spread definition 

( ) ( )
2

0

    with  p d p power azimuth profile
π

φ φφ φ φ φ φ= = −∫
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Example: 2 paths with equal power and different directions of arrival, fA and fB 

x 

y 

x’ 

y’ 

ϕB	


ϕA	

O 15° 

15° 

345Aφ = ° 15Bφ = °

180φ = ° 165φσ = °

2 different reference systems: Oxy and Ox’y’ 

The azimuth angles are measured from the x 
and x’ axis counterclockwise 

Adopting the reference system Oxy, we have: 

Adopting the reference system Ox’y’, we have:                      ,                       165Aφ = ° 195Bφ = °

180φ = ° 15φσ = ° !!! 

( ) ( ) ( )1 1
2 2A Bpφ φ δ φ φ δ φ φ= − + −

Azimuth Spread problem 

The reference system yielding the minimum spread should always be adopted 
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( ) ( ) ( ) ( ) ( ) ( ), cos sin ,sin sin ,cos
T

θ φ φ θ φ θ θ⎡ ⎤Ω =Ω = ⎣ ⎦
 

Each direction can be represented 
by a unit vector                     . The 
initial point of    is anchored at 
the reference location O, while its 
tip is located on a sphere of unit 
radius centered on O (see figure) 

( ),θ φΩ =Ω
 

Ω


3D Angle-spread 
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 Mean Direction Of Arrival (DOA):  
 
 

 3D angle spread[*]: 
 
 

 (the last equality results from:            ) 
 

 In the discrete case the definitions above become: 

( )
4

  p d
π

ΩΩ = Ω Ω Ω∫
  

( )2 2 223

4

1DAS p d
π

σ ΩΩ= = Ω− Ω Ω Ω = Ω − Ω = − Ω∫
     

1

N

k k
k
p

=

Ω = Ω∑
  2 2

1
1

N

k
k

pσΩ
=

= Ω− Ω = − Ω∑
  

3D Angle-spread (II) 

1Ω =


3D power-angle profile ( )pΩ Ω
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     does not depend on the choice of the reference system in the RX location 

 
  provides a 3D description of the angle dispersion of the channel. 

  Notice that, in general, results: 
  
 Therefore it has the meaning of percentage of the whole solid angle 

σΩ


σΩ


[ ]0 ,  1σΩ ∈

3D Angle-spread (III) 

A completely similar formulation holds for the angle of departure 



V. Degli-Esposti, “Propagazione e pianificazione… LS” 

Extension to the space domain (1/2) 
Let’s consider the basic low-pass channel transfer function: 

It is useful to consider the space domain, for example in terms of the position of the 
receiver r=(x,y,z). It is known that the channel changes over small-scale r changes (e.g: fast 
fading). Therefore we can assume: 

space, r 

It is enough to note here that r-dependecy must be of the e-kind since angle dependency is 
of the δ-kind. We can have for example (typical Rayleigh fading pattern): 

( ) (0,0, ) H H=r r

  
H (t, f ) = ρie

j 2π fi t−2π f + f0( )ti +ϑi{ }
i
∑  

   
H (t, f ,r) = ρi fi r( )e j 2π fi t−2π f + f0( )ti +ϑi{ }

i
∑

|H(r)|∝ fi r( )
i
∑
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Extension to the space domain (2/2) 
The space-dependance is Fourier-related to the angle dependance. 
It can be shown for example that H(x,y) on a plane is a 2-D Fourier transform of the 
corresponding H(θ,ϕ) (Fourier’s optics, not covered here). 
 
Therefore the space domain can be defined e-kind while the angle domain can be defined δ-
kind 
 
Examples: 

   
1 path case:   pφ φ( ) = δ φ − φ0( )   ⇒   f r( ) = constant

    
uniform 2D case:  pφ φ( ) = 1

2π
  ⇒  fi r( )

i
∑  random Rayleigh fading (no dim.)

Space dependence of the envelope (es: |H(r)|)  is what is called elsewhere fast fading.  
If fading is flat in frequency, absolute time, can still be “selective” in space. 

Jakes Model 
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Envelope correlations (1/5) 
It is useful to define transfer function’s envelope-correlations. Considering the module of 
the generic transfer function |M(z)| in a e-kind domain z, the domain span Δz and the 
average value       over Δz we have: 

“z-wise” correlation (envelope correlation) 

Rz δ( ) =
M z( ) − M Δz

⎡
⎣

⎤
⎦ M z +δ( ) − M Δz
⎡
⎣

⎤
⎦dz

Δz
∫

M z( ) − M Δz
⎡
⎣

⎤
⎦
2
dz

Δz
∫

; Rz 0( ) =1, −1< Rz δ( ) ≤1

z
M

Δ

Especially absolute time, frequency and space correlations are useful. The last one is 
fundamental for diversity techniques and MIMO. 

 lim
δ→∞

Rz δ( ){ } = 0
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Envelope correlations (2/5) 

Space correlation (along the x direction) 

Rx l( ) =
H x( ) − H Δx

⎡
⎣

⎤
⎦ H x + l( ) − H Δx
⎡
⎣

⎤
⎦dx

Δx
∫

H x( ) − H Δx
⎡
⎣

⎤
⎦
2
dx

Δx
∫

Ex: frequency correlation 

Rf w( ) =
H f( ) − H Δf

⎡
⎣

⎤
⎦ H f +w( ) − H Δf
⎡
⎣

⎤
⎦df

Δf
∫

H f( ) − H Δf
⎡
⎣

⎤
⎦
2

df
Δf
∫
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Envelope correlations (3/5) 
Ex. space correlation in a Rayleigh environment, i.e. with uniform 2D power-angle 
distribution with pϕ(ϕ)=1/2π is: 

Rx l( ) = J0 2π lλ
⎛
⎝⎜

⎞
⎠⎟

With J0 the zero order Bessel’s function of 
the first kind. This means that the signal 
received from two Rx’s λ/2 apart is nearly 
uncorrelated (see figure), and this can  be 
useful to decrease fast fading effects l/λ	


J0 
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Envelope correlations (4/5) 
Frequency correlation and time correlation allow a rigorous definition of coherence 
bandwidth and coherence time. 
Given a reference, residual frequency correlation “a”, then coherence bandwidth is: 

  
BC

a( ) = w with Rf w( ) ≤ a  for  w ≥ w

Similarly, given a reference, residual time correlation “a”, then coherence time is : 

  TC
a( ) = t with Rt t( ) ≤ a  for t ≥ t

Coherence distance Lc can also be defined in the following way: 

  LC
a( ) = l with Rx l( ) ≤ a  for l ≥ l



V. Degli-Esposti, “Propagazione e pianificazione… LS” 

Envelope correlations (5/5) 
The higher the coherence distance Lc the lower the angle spread. 
All considered we have: 

0.1 1
c
B

ξσ
 0.1 1

c
T

νσ
 0.1 1 1

4c
L λ

σ σΩ Ω

∝ ≈
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The scenario – central Helsinki 

  Dense urban area 
  TX: 3m above rooftop 
  Rx on a trolley 
    h   1.5m 
 
  RT simulation with 

only 3 events 
 
 

≈

Water 

Examples: ray tracing simulations 
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Route EF (1/3) [*] 

[*] measurements by Helsinki University of Technology 
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Route EF (2/3) 
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azimuth-distance plot 
  measured [*]     RT simulated 

Route EF (3/3) 
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azimuth-distance plot 
  measured [*]     RT simulated 

Route GH 
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Multidimensional prediction by ray tracing 
Example 

Helsinki route GH: azimuth-delay animation 
    (RT simulation only) 

Azimuth [Deg] 
-180 180 0 

Delay(ns)  

0 

4 

2 

h(ξ,f) 


