C - IL CANALE RADIOMOBILE

. I parametri sintetici (delay-spread, banda di coerenza ecc.).
. Estensione al dominio spaziale
. Autocorrelazioni
. Esempi
. Tecniche di diversita, MIMO, e space-time coding
. Tecniche di diversita

. Matrice di canale e MIMO
. Multiplexing gain e cenni a space-time coding.




Synthetic channel parameters (1/4)

Let’ s consider a fixed sounding time t=0, therefore we get h(0,&)=h(&).

Notice thath(&)1s not a sequence of Dirac’s impulses 1n real life, ‘cause
real channels have a limited bandwidth:

h(&)=h(E)*h,(£)

“ ho h,© hel
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where:

h.(§) 1deal impulse response of the propagation channel
h,(§) impulse response of the antennas, amplifiers and mo-dem




Power-delay profile

The normalized power-delay profile can be defined as:

[W/s]; it's normalized: J p(é)d E=1

If a statistical evaluation of p(§) in a given environment is needed, then
averaging M different realizations/samples of p(&) we get:

M
(&)= ﬁ kz_; p* (&) (average power-delay profile)



Power-delay profile (alternative definition)

h (5 ) P (5 ) (time power-spectrum)

F | | F

H ( f ) - C( f ) (frequency correlation)




Power-Doppler profile

Similarly, at a frequency =0, using F(v,0)=F(v) the normalized power-
Doppler profile can be defined so that:

_JFe)

JF)

p,(v) WHZ  p, ()= 3l ()

dv

Power-profiles, also called power-densities or power spectra can be
defined on domains were the transfer function is a (limited) energy-

signal (i.e. 0-kind in the discrete case).

In our case therefore we have power profiles in the excess delay and in
the Doppler frequency domains




Dispersion parameters

RMS delay spread (DS) RMS Doppler spread (W)

DS=\|[p@E)E-Ty0Y dE  T,y=[pE)ds| W=\[p,0)V-W,Yav  W,=[p,(v)vav

DS and W are nothing but the standard deviations of p and p,, interpreted as pdf’s.

An estimate of coherence bandwidth and coherence time can be derived:

Coherence bandwidth Coherence time
1 1
B, =— T, =—
DS w

Usually, average versions of DS, W, B_, T, are derived using the corresponding
average power profiles.




Discrete case

X, | (@)l
()= p,8(E—1,)el ) I ——

5 IR

t. &

Since h(&) 1s a discrete function which is defined only for &={t.}, and therefore
the impulses do not overlap, we have:

‘h(fé)‘: ipig(é_ti)e(_zﬂfot+0 ((ga ) j(=2mfy1i46;)| _ ._r D, 6(€_ti)
then
\h@)f=(z’l|p,.|-5(5—ri>j-(zl|pi|-6(5—@]:lef-a@-r

were the last equal sign is due to the fact that the double products at the left-
hand side are non-zero only when 1=j. Also, for simplicity we have assumed

that §° (5 ) 5<§_ti)




Discrete case — Power profiles

Therefore we get the power-deplay profile:

Sois(e-n)  Xpla(e-1) S pr5(-1)
ple)-—5 - - ple)- 5
Jgpffs(é—t,-)dé ;pfjc?(cf—t,-)df 2P

And with a similar procedure we can get the power-Doppler profile:

ipizg(v_fi)
Py (V): = N
2P

i=l

(power-Doppler profile)

Of course these profiles can be averaged to get estimates of the
corresponding average functions.




Discrete case - dispersion parameters

Discrete DS and W can be directly derived from the power-delay and power-
Doppler profiles:

al N 2 here: _Pi _ P
T™,=)t-p,| |DS=0,= Z(ti—TM)-pi where: p;=—"—=73

And:

VV():Z,fi'pi chv:\/Z(fi_VVO)z'pi

Other parameters can be introduced which refer to space instead of excess delay
or doppler frequency. Thus a so called multidimensional characterization of
the mobile radio channel can be derived, in both a statistical (through
statistical/average functions) and deterministic way (measured or simulated
Elata).

£
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Example of power-Doppler profile

Doppler Spectrum for path 1 (Measured data updated)
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What 1s multidimensional
propagation characterization?

Radio propagation characterization in terms of coverage, path-loss, path-
gain or received power 1s usually called narrowband characterization

Radio propagation characterization in terms of power-delay profile, delay
spread, power-Doppler profile, Doppler spread, Coherence bandwidth or
Coherence time, frequency response, etc. is usually called wideband
characterization

Radio propagation characterization in terms of all of the previous
parameters and also in terms of spatial parameters (angle of arrival/

emission, power-angle profiles, angle spread, etc.) i1s called
multidimensional characterization

In short: multidimensional characterization is the characterization of
multipath propagation with respect to all domain dimensions: amplitude,
time, frequency, Doppler frequency, space

J

MIMO



Extension to the angle domain (1/2)

Let’ s consider the low-pass channel impulse response:

ht,E)=Y pS[&—t e trrmrhiti

If, for instance, the azimuth angle of arrival @ is considered then since the signal arrives
from discrete angles @, corresponding to paths, it 1s straightforward to get an angle-
dependent version of h:

h(t,&,0)= Z pS[E—116[p—¢ e/ Cmi2mhnso}

Of course the same Dirac’ s impulse-dependance also appears in the other transfer
functions, e.g:

H(t.f.9)= Y. pd[ 99, ]/ 0k




Extension to the angle domain (2/2)

If H(p)=H(0,0, @), then a power-azimuth profile can be defined:

In the 1deal case the power-azimuth profile has the simple form:

N ipi25(q)—¢i) N
HO)=2p6(0-0) = p,(#)=" : =Y. p6(0-9)
i=1 pi2 i=1

i=1

Similarly, a power-elevation profile can be derived. Through the power-azimuth profile
the Azimuth-Spread (AS) can be defined




Azimuth-Spread definition

Mean angle (azimuth) of arrival:

¢ = f¢p¢ (¢)d¢ with p, (¢ )= power — azimuth profile

RMS Azimuth Spread:

AS =0, =\/T ((/)—(17)2 P, (0)do

In the discrete case we have:

AS = Z,pi (¢z _5)2




Azimuth Spread problem

Example: 2 paths with equal power and different directions of arrival, f, and fg

Y 2, (0)=58(0-0,)+55(0-0,)

0g 2 different reference systems: Oxy and Ox’ y’

G2 Ry P . The azimuth angles are measured from the x
o and x” axis counterclockwise

Adopting the reference system Oxy, we have:
¢, =345° Oy =15°

> 9 =180° o, =165°

Adopting the reference system Ox'y , we have: ¢, =165° , ¢, =195°

> ¢ =180° o, =15 11

saiie, The reference system yielding the minimum spread should always be adopted




3D Angle-spread

| Dircction of incidence
/chamctcrized by
/

(0,0,1)

Lo

Each direction can be represented
by a unit vector Q=€(6,¢). The
initial point of €2 is anchored at
the reference location O, while its
tip 1s located on a sphere of unit
radius centered on O (see figure)

Q=Q(0,9)=| cos(¢)sin(6),sin (¢ )sin (6 ),cos (6 )]T




3D Angle-spread (II)
Mean Direction Of Arrival (DOA):

<é> - .[ Q Pq (Q)dQ Po (Q) 3D power-angle profile
41

3D angle spreadl™:

2

- I-

()

()

AS* =0, :\/j Q-(Q) po @2 :J<‘Q‘2>_

(the last equality results from: ‘f)‘ =1)

In the discrete case the definitions above become:

@)=3n0 o,




3D Angle-spread (I1I)

O o does not depend on the choice of the reference system in the RX location

O O provides a 3D description of the angle dispersion of the channel.

> Notice that, in general, results: 0 € [O , 1]

Therefore 1t has the meaning of percentage of the whole solid angle

A completely similar formulation holds for the angle of departure




Extension to the space domain (1/2)

Let’ s consider the basic low-pass channel transfer function:

Ht )= p o/ R )0l

It 1s useful to consider the space domain, for example in terms of the position of the
receiver r=(x,y,z). It is known that the channel changes over small-scale r changes (e.g: fast
fading). Therefore we can assume:

H(, f,r)= szfi (r)ej{Zﬂfit—27r(f+f0)ti+z9i}

It 1s enough to note here that r-dependecy must be of the e-kind since angle dependency is
of the 0-kind. We can have for example (typical Rayleigh fading pattern):

H(r)=H(0,0,r)

space, 1



Extension to the space domain (2/2)

The space-dependance is Fourier-related to the angle dependance.
It can be shown for example that H(x,y) on a plane is a 2-D Fourier transform of the

correspondine H(6,0) (Fourier’s optics, not covered here).

Therefore the space domain can be defined e-kind while the angle domain can be defined -
kind

Examples:

1 path case: P, (q)) = 5((1) — ¢0) = f(r) = constant

= random Rayleigh fading (no dim.)

2/(r)

\fniform 2D case: p, ((p) = 2L =
T
Jakes Model

Space dependence of the envelope (es: |H(r)|) is what is called elsewhere fast fading.
If fading is flat in frequency, absolute time, can still be “selective” in space.




Envelope correlations (1/5)

It 1s useful to define transfer function’s envelope-correlations. Considering the module of
the generic transfer function [M(z)| in a e-kind domain z, the domain span Az and the
average value ‘M over Az we have:

“z-wise” correlation (envelope correlation)
J U ()= o J[[oe (=+ 8- o], Ja=
R (8)== ; R(0)=1,-1<R (5)<I

J [ (=) |1 ] o tim{R (5)}=0

Az

Especially absolute time, frequency and space correlations are useful. The last one 1s
fundamental for diversity techniques and MIMO.




Envelope correlations (2/5)

Ex: frequency correlation

(-4, Tt -1, Lo

e T

Af

Space correlation (along the x direction)
J L (o=, J o Geor )| 1] Je
R (7)== :
J U Ce)l-1,, ]

Ax




Envelope correlations (3/5)

Ex. space correlation in a Rayleigh environment, i.e. with uniform 2D power-angle
distribution with p (¢)=1/2m 1s:

(271_1] 13\"ﬁ'| M MM ELELILLE IR ILALALI I ?
—_— L,“

A computation
S measurement
! A B R Rayleigh (theoretic)

With J, the zero order Bessel s function of
the first kind. This means that the signal 0.2
received from two Rx’s A/2 apart is nearly
uncorrelated (see figure), and this can be 0
useful to decrease fast fading effects
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Envelope correlations (4/5)

Frequency correlation and time correlation allow a rigorous definition of coherence
bandwidth and coherence time.
Given a reference, residual frequency correlation “a”, then coherence bandwidth is:

B = with R (w)<a for w2iw

Similarly, given a reference, residual time correlation “a”, then coherence time is :

TC(,a)zf with Rt(t)Sa fort>1

Coherence distance L can also be defined in the following way:

L) =T with R (1)<a forl>T




Envelope correlations (5/5)

The higher the coherence distance L, the lower the angle spread.
All considered we have:




Examples: ray tracing simulations

The scenario — central Helsinki
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Route EF (1/3) I

=== Simulation - NO scattering
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Route EF (2/3)

Simulations

--- Measurements
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Route EF (3/3)

azimuth-distance plot
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Route GH

azimuth-distance plot
measured [#] RT simulated
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Multidimensional prediction by ray tracing
Example

Helsinki route GH: azimuth-delay animation
(RT simulation only)
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