Exercise A2

Problem 1

Let's consider a 1800 MHz public mobile radio system operating in a microcellular environment. The base station is at a height of 3 m above the ground and the mobile at 1 m . The antenna gains are 5 and 3 dBi 's for the BS and the mobile antenna, respectively.

It is required to determine the minimum transmitted power in order for the BS to serve a mobile at a distance of 1000 m in LOS. Receiver sensitivity is -104 dBm . Ground reflection must be taken into account.

Problem 2

Now the mobile turns into a perpendicular street and and goes another 100 meters down the street. The same minimum Tx power as in problem 1 must be determined, this time neglecting ground reflection, assuming the same height for both terminals and using GTD diffraction coefficients. Both the BS and the mobile are at 10 m from the side of the street. Polarization is horizontal.

Solution

Problem 1

Friis's equation is:

$$
\operatorname{Pt}(\mathrm{dBm})=\operatorname{Pr}(\mathrm{dBm})-\mathrm{Gt}-\mathrm{Gr}+20 * \log (4 \pi \mathrm{~d} / \lambda)
$$

If only the direct ray is considered we have

$$
\operatorname{Pt}^{\prime}(\mathrm{dBm})=-104-5-3+97.6=-14.4 \mathrm{dBm}
$$

If also ground reflection is considered we have an additional path gain of

$$
20 * \log \left\{\frac{|E|}{\left|E_{0}\right|}\right\}=20 * \log \left\{2 \left\lvert\, \sin \left(\frac{2 \pi}{\lambda} \frac{h_{1} h_{2}}{d}\right)\right.\right\}=-13.15 d B
$$

Since link distance is much greater than breakpoint distance (about 72 m here) also the simplified formula could be used:
$20 * \log \left\{\frac{|E|}{\left|E_{0}\right|}\right\}=20 * \log \left\{\frac{4 \pi}{\lambda} \frac{h_{1} h_{2}}{d}\right\}=-12.91 d B$
Using the first, more accurate result we get:
$\mathrm{Pt}(\mathrm{dBm})=\mathrm{Pt}^{\prime}+13.15=-0.9 \mathrm{dBm}$

Problem 2

Adopting a similar approach as before, if diffraction would cause no attenuation we'd have a total path of
$s^{\prime}+s=\sqrt{1000^{2}+10^{2}}+\sqrt{100^{2}+10^{2}} \simeq 1000+100.5=1100.5 \mathrm{~m}$
Without diffraction we would therefore get:
$\operatorname{Pt}^{\prime}(\mathrm{dBm})=-104-5-3+98.4=-13.6 \mathrm{dBm}$

Now let's derive the additional path gain with diffraction
$P G=20 * \log \left\{\frac{|E|}{\left|E_{0}\right|}\right\}$
The field of the unfolded ray without diffraction would be
$\mathbf{E}_{0}=j \sqrt{\frac{\eta P G_{T x}}{2 \pi}} \frac{e^{-j \beta r}}{r} \mathbf{i}_{x}=j \sqrt{60 E I R P} \frac{e^{-j \beta r}}{r} \mathbf{i}_{x}$
Thus:
$\left|\mathbf{E}_{0}\right|=\frac{\sqrt{60 E I R P}}{s+s^{\prime}}$
Where $s+s^{\prime}$ is the total unfolded ray length. Now, if P_{d} is the diffraction point on the edge, for the diffracted field we have:
$|E|=\left|E\left(P_{d}\right)\right| \cdot|D| \cdot A\left(s, s^{\prime}\right)=\frac{\sqrt{60 E I R P}}{s^{\prime}}\left|D_{H}\right| \cdot \sqrt{\frac{s^{\prime}}{s\left(s+s^{\prime}\right)}}$
Therefore (see also the appendix)
$P G=20 * \log \left\{\frac{|E|}{\left|E_{0}\right|}\right\}=20 * \log \left\{\left|D_{H}\right| \cdot \frac{s+s^{\prime}}{s^{\prime}} \sqrt{\frac{s^{\prime}}{s\left(s+s^{\prime}\right)}}\right\}=$
$20 * \log \left\{\left|D_{H}\right| \cdot \sqrt{\frac{s+s^{\prime}}{s \cdot s^{\prime}}}\right\} \simeq-36.06 \mathrm{~dB}$
And transmitted power must be
$\mathrm{Pt}=\mathrm{Pt}+36.06=-13.6+36.06 \approx 22.5 \mathrm{dBm} \approx 178 \mathrm{~mW}$

A more straightforward method is to compute the field at the diffraction point using a formula similar to (1), then compute the diffracted field in the destination point with the usual GTD formula, and finally derive the received power (as a function of the Tx power) by multiplying the destination incident power density by the effective area of the Rx antenna.

Adopting this approach we have:

$$
|E|=\left|E\left(P_{d}\right)\right| \cdot|D| \cdot A\left(s, s^{\prime}\right)=\frac{\sqrt{60 E I R P}}{s^{\prime}}\left|D_{H}\right| \cdot \sqrt{\frac{s^{\prime}}{s\left(s+s^{\prime}\right)}}
$$

where

$$
A\left(s, s^{\prime}\right)=\sqrt{\frac{s^{\prime}}{s\left(s+s^{\prime}\right)}}=0.095 \text { and }\left|D_{H}\right|=0.15
$$

therefore:

$$
P_{R}=\frac{|E|^{2}}{2 \eta} G_{R} \frac{\lambda^{2}}{4 \pi}=-104[\mathrm{dBm}]=39.8 \times 10^{-15}[\mathrm{~W}]
$$

Thus :
$|E|^{2}=P_{R} \frac{2 \eta \cdot 4 \pi}{G_{R} \cdot \lambda^{2}}=P_{R} \frac{8 \cdot 120 \pi^{2}}{G_{R} \cdot \lambda^{2}}$
\Downarrow
$\frac{\sqrt{60 E I R P}}{s^{\prime}}\left|D_{H}\right| \cdot A=\sqrt{P_{R} \frac{8 \cdot 120 \pi^{2}}{G_{R} \cdot \lambda^{2}}}$
\Downarrow
$E I R P=P_{R} \frac{8 \cdot 2 \pi^{2}}{G_{R} \cdot \lambda^{2}} \frac{s^{\prime 2}}{\left|D_{H}\right|^{2} \cdot A^{2}}$
\Downarrow
$P_{T}=P_{R} \frac{8 \cdot 2 \pi^{2}}{G_{T} G_{R} \cdot \lambda^{2}} \frac{s^{\prime 2}}{\left|D_{H}\right|^{2} \cdot A^{2}}=39.8 \times 10^{-15} \frac{16 \pi^{2}}{3.16 \cdot 2 \cdot \lambda^{2}} \frac{1000^{2}}{0.15^{2} \cdot 0.095^{2}}=0.177$ [W]

Appendix: computation of $\left|\mathrm{D}_{\mathrm{H}}\right|$
The GTD expression is:
$D^{H}\left(\phi, \phi^{\prime}, n\right)=\frac{-e^{-j \pi / 4} \cdot \sin (\pi / n)}{n \sqrt{2 \pi \beta}} \cdot\left[\frac{1}{\cos (\pi / n)-\cos \left(\xi^{-} / n\right)}+\frac{1}{\cos (\pi / n)-\cos \left(\xi^{+} / n\right)}\right]$
In this case:
$\mathrm{n}=1.5$
$\phi=1.5 \pi-\operatorname{atan}(10 / 100)=4.61 \mathrm{Rad}$
$\phi^{\prime}=\operatorname{atan}(10 / 1000)=0.01$
$\zeta=\phi-\phi=4.6$
$\zeta^{+}=\phi+\phi^{\prime}=4.62$
The square parenthesis in 1) gives therefore
$\left[\frac{1}{\cos (\pi / 1.5)-\cos (4.60 / 1.5)}+\frac{1}{\cos (\pi / 1.5)-\cos (4.62 / 1.5)}\right]=[2.01+2.008]=4.018$
While the preceding factor gives:
$\left|\frac{-e^{-j \pi / 4} \cdot \sin (\pi / n)}{n \sqrt{2 \pi \beta}}\right|=\frac{\sin (\pi / 1.5)) \sqrt{\lambda}}{1.5 \cdot 2 \pi}=0.037$
Thus:
$\left|D^{H}\right|=0.037 \cdot 4.018=0.15$

